128 research outputs found

    Multiplicity distribution and spectra of negatively charged hadrons in Au+Au collisions at sqrt(s_nn) = 130 GeV

    Full text link
    The minimum bias multiplicity distribution and the transverse momentum and pseudorapidity distributions for central collisions have been measured for negative hadrons (h-) in Au+Au interactions at sqrt(s_nn) = 130 GeV. The multiplicity density at midrapidity for the 5% most central interactions is dNh-/deta|_{eta = 0} = 280 +- 1(stat)+- 20(syst), an increase per participant of 38% relative to ppbar collisions at the same energy. The mean transverse momentum is 0.508 +- 0.012 GeV/c and is larger than in central Pb+Pb collisions at lower energies. The scaling of the h- yield per participant is a strong function of pt. The pseudorapidity distribution is almost constant within |eta|<1.Comment: 6 pages, 3 figure

    Measurement of inclusive antiprotons from Au+Au collisions at 130 GeV

    Full text link
    We report the first measurement of inclusive antiproton production at mid-rapidity in Au+Au collisions at 130 GeV by the STAR experiment at RHIC. The antiproton transverse mass distributions in the measured transverse momentum range of 0.25 < pT < 0.95 GeV/c are found to fall less steeply for more central collisions. The extrapolated antiproton rapidity density is found to scale approximately with the negative hadron multiplicity density.Comment: 7 pages, 3 figure

    Antideuteron and antihelion production in root(s) = 130 GeV Au+Au collisions

    Full text link
    The first measurements of light antinucleus production in Au+Au collisions at RHIC are reported. The observed production rates for antideuterons and antihelions are much larger than in lower energy nucleus-nucleus collisions. A coalescence model analysis of the yields indicates that there is little or no increase in the antinucleon freeze-out volume compared to collisions at SPS energy. These analyses also indicate that the antihelion freeze-out volume is smaller than the antideuteron freeze-out volume.Comment: Submitted to Phys. Rev. Let

    Identified Particle Elliptic Flow in Au+Au Collisions at sNN=130\sqrt{s_{_{NN}}}=130 GeV}

    Full text link
    We report first results on elliptic flow of identified particles at mid-rapidity in Au+Au collisions at sNN=130\sqrt{s_{_{NN}}}=130 GeV using the STAR TPC at RHIC. The elliptic flow as a function of transverse momentum and centrality differs significantly for particles of different masses. This dependence can be accounted for in hydrodynamic models, indicating that the system created shows a behavior consistent with collective hydrodynamical flow. The fit to the data with a simple model gives information on the temperature and flow velocities at freeze-out.Comment: REVTeX style include

    Pion Interferometry of sNN=130\sqrt{s_{NN}} = 130 GeV Au+Au Collisions at RHIC

    Full text link
    Two-pion correlation functions in Au+Au collisions at sNN=130\sqrt{s_{NN}} = 130 GeV have been measured by the STAR (Solenoidal Tracker at RHIC) detector. The source size extracted by fitting the correlations grows with event multiplicity and decreases with transverse momentum. Anomalously large sizes or emission durations, which have been suggested as signals of quark-gluon plasma formation and rehadronization, are not observed. The HBT parameters display a weak energy dependence over a broad range in sNN\sqrt{s_{NN}}.Comment: 6 pages, 3 figures; accepted to Phys Rev Lett; data tables available at STAR web site http://www.star.bnl.gov/ Click on "Publications" in menu ba

    Mid-rapidity anti-proton to proton ratio from Au+Au collisions at sNN=130 \sqrt{s_{NN}} = 130 GeV

    Full text link
    We report results on the ratio of mid-rapidity anti-proton to proton yields in Au+Au collisions at \rts = 130 GeV per nucleon pair as measured by the STAR experiment at RHIC. Within the rapidity and transverse momentum range of y<0.5|y|<0.5 and 0.4 <pt<<p_t< 1.0 GeV/cc, the ratio is essentially independent of either transverse momentum or rapidity, with an average of 0.65±0.01(stat.)±0.07(syst.)0.65\pm 0.01_{\rm (stat.)} \pm 0.07_{\rm (syst.)} for minimum bias collisions. Within errors, no strong centrality dependence is observed. The results indicate that at this RHIC energy, although the pp-\pb pair production becomes important at mid-rapidity, a significant excess of baryons over anti-baryons is still present.Comment: 5 pages, 3 figures, accepted by Phys. Rev. Let

    d̅ and 3He̅ Production in √sNN = 130 GeV Au+Au Collisions

    Get PDF
    A report on the first measurements of light antinucleus production in Au + Au collisions at the Relativistic Heavy-Ion Collider (RHIC) was presented. The production rates for d̄ and He were observed to be much larger than in lower energy nucleus-nucleus collisions. A little or no increase in the antinucleon freeze-out volume compared to CERN Super Proton Synchrotron (SPS) energy was indicated by a coalescence model analysis. The He freeze-out volume was indicated to be smaller than the d̄ freeze-out volume

    Pion interferometry of root s(NN)=130 GeV Au+Au collisions at RHIC

    Get PDF
    Two-pion correlation functions in An + Au collisions at roots(NN) = 130 GeV have been measured by the STAR (solenoidal tracker at RHIC) detector. The source size extracted by fitting the correlations grows with event multiplicity and decreases with transverse momentum. Anomalously large sizes or emission durations, which have been suggested as signals of quark-gluon plasma formation and rehadronization, are not observed. The Hanbury Brown-Twiss parameters display a weak energy dependence over a broad range in roots(NN)
    corecore