729 research outputs found

    The Apollonian decay of beer foam bubble size distribution and the lattices of young diagrams and their correlated mixing functions

    Get PDF
    We present different methods to characterise the decay of beer foam by measuring the foam heights and recording foam images as a function of time. It turns out that the foam decay does not follow a simple exponential law but a higher-order equation V(t)=a−bt−ct2.5, which can be explained as a superposition of two processes, that is, drainage and bubble rearrangement. The reorganisation of bubbles leads to the structure of an Apollonian gasket with a fractal dimension of D≈1.3058. Starting from foam images, we study the temporal development of bubble size distributions and give a model for the evolution towards the equilibrium state based upon the idea of Ernst Ruch to describe irreversible processes by lattices of Young diagrams. These lattices generally involve a partial order, but one can force a total order by mapping the diagrams onto the interval [0,1] using ordering functions such as the Shannon entropy. Several entropy-like and nonentropy-like mixing functions are discussed in comparison with the Young order, each of them giving a special prejudice for understanding the process of structure formation during beer foam decay

    Molecular Analyses of Human Induced Pluripotent Stem Cells and Embryonic Stem Cells

    Get PDF
    SummaryRecent work from our group and others has argued that human induced pluripotent stem cells (hiPSCs) generated by the introduction of four viruses bearing reprogramming factors differ from human embryonic stem cells (hESCs) at the level of gene expression (Chin et al., 2009). Many of the differences seen were common across independent labs and, at least to some extent, are thought to be a result of residual expression of donor cell-specific genes (Chin et al., 2009; Ghosh et al., 2010; Marchetto et al., 2009). Two new reports reanalyze similar expression data sets as those used in Chin et al. (2009) and come to different conclusions (Newman and Cooper, 2010; Guenther et al., 2010). We compare various approaches to perform gene expression meta-analysis that all support our original conclusions and present new data to demonstrate that polycistronic delivery of the reprogramming factors and extended culture brings hiPSCs transcriptionally closer to hESCs

    Observations on the So-Called Trumpeter in Bumblebee Colonies

    Get PDF

    Graphentheoretische Uberlegungen zum Mechanismus der Solvolyse des Allylcarbinylamins

    Get PDF
    Es wird ein graphentheoretisches Modell zur Beschreibung der Solvolysereaktion des Allylcarbinylamins unter bestimmten Grenzbedingungen entwickelt, mit dem es gelingt, die Struktur des Molekillreaktionsraumes zu erfassen. Es handelt sich hierbei um ein geschlossenes graphentheoretisches Modell, dessen Aussagekraft auf der Verwendung kombinatorischer Methoden beruht. Ausgeh_end von der Struktur der Prodliktgraphen wird eine Formulierung fiir den Chemismus der Reaktion vorgeschlagen, anhand derer denkbare Reaktionsmechanismen dieser Solvolysereaktion iiberpriift werden

    Loss of MECP2 Leads to Activation of P53 and Neuronal Senescence.

    Get PDF
    To determine the role for mutations of MECP2 in Rett syndrome, we generated isogenic lines of human induced pluripotent stem cells, neural progenitor cells, and neurons from patient fibroblasts with and without MECP2 expression in an attempt to recapitulate disease phenotypes in vitro. Molecular profiling uncovered neuronal-specific gene expression changes, including induction of a senescence-associated secretory phenotype (SASP) program. Patient-derived neurons made without MECP2 showed signs of stress, including induction of P53, and senescence. The induction of P53 appeared to affect dendritic branching in Rett neurons, as P53 inhibition restored dendritic complexity. The induction of P53 targets was also detectable in analyses of human Rett patient brain, suggesting that this disease-in-a-dish model can provide relevant insights into the human disorder

    Predator-induced changes of female mating preferences: innate and experiential effects

    Get PDF
    Background: In many species males face a higher predation risk than females because males display elaborate traits that evolved under sexual selection, which may attract not only females but also predators. Females are, therefore, predicted to avoid such conspicuous males under predation risk. The present study was designed to investigate predator-induced changes of female mating preferences in Atlantic mollies (Poecilia mexicana). Males of this species show a pronounced polymorphism in body size and coloration, and females prefer large, colorful males in the absence of predators. Results: In dichotomous choice tests predator-naïve (lab-reared) females altered their initial preference for larger males in the presence of the cichlid Cichlasoma salvini, a natural predator of P. mexicana, and preferred small males instead. This effect was considerably weaker when females were confronted visually with the non-piscivorous cichlid Vieja bifasciata or the introduced non-piscivorous Nile tilapia (Oreochromis niloticus). In contrast, predator experienced (wild-caught) females did not respond to the same extent to the presence of a predator, most likely due to a learned ability to evaluate their predators' motivation to prey. Conclusions: Our study highlights that (a) predatory fish can have a profound influence on the expression of mating preferences of their prey (thus potentially affecting the strength of sexual selection), and females may alter their mate choice behavior strategically to reduce their own exposure to predators. (b) Prey species can evolve visual predator recognition mechanisms and alter their mate choice only when a natural predator is present. (c) Finally, experiential effects can play an important role, and prey species may learn to evaluate the motivational state of their predators. Keywords: Sexual selection; female choice; non-independent mate choice; predator recognition; Poecilia mexican

    Sex-specific local life-history adaptation in surface- and cave-dwelling Atlantic mollies (Poecilia mexicana)

    Get PDF
    Cavefishes have long been used as model organisms showcasing adaptive diversification, but does adaptation to caves also facilitate the evolution of reproductive isolation from surface ancestors? We raised offspring of wild-caught surface- and cave-dwelling ecotypes of the neotropical fish Poecilia mexicana to sexual maturity in a 12-month common garden experiment. Fish were raised under one of two food regimes (high vs. low), and this was crossed with differences in lighting conditions (permanent darkness vs. 12:12 h light:dark cycle) in a 2 × 2 factorial design, allowing us to elucidate potential patterns of local adaptation in life histories. Our results reveal a pattern of sex-specific local life-history adaptation: Surface molly females had the highest fitness in the treatment best resembling their habitat of origin (high food and a light:dark cycle), and suffered from almost complete reproductive failure in darkness, while cave molly females were not similarly affected in any treatment. Males of both ecotypes, on the other hand, showed only weak evidence for local adaptation. Nonetheless, local life-history adaptation in females likely contributes to ecological diversification in this system and other cave animals, further supporting the role of local adaptation due to strong divergent selection as a major force in ecological speciation
    corecore