9 research outputs found

    Phase I/II study of DHA–paclitaxel in combination with carboplatin in patients with advanced malignant solid tumours

    Get PDF
    DHA–paclitaxel is a conjugate of paclitaxel and the fatty acid, docosahexaenoic acid. Preclinical studies have demonstrated increased activity, relative to paclitaxel, with the potential for an improved therapeutic ratio. We conducted a phase I study to determine the maximum tolerated doses of DHA–paclitaxel and carboplatin when administered in combination. Two cohorts of patients were treated: carboplatin AUC 5 with DHA–paclitaxel 660 mg m-2 and carboplatin AUC 5 with DHA–paclitaxel 880 mg m-2. Both drugs were given on day 1 every 21 days. A total of 15 patients were enrolled with a median age of 59 years (range 33–71). All patients had advanced cancer refractory to standard treatment, performance status 0–2 and were without major organ dysfunction. A total of 54 cycles of treatment were delivered. No dose-limiting toxicity (DLT) was seen in the first cohort of three patients. In an expanded second cohort, neutropenia was the main DLT, occurring in the first cycle of treatment in five of 12 patients: three of these patients and one additional patient also experienced dose-limiting grade 3 transient rises in liver transaminases. No alopecia was seen and one patient developed clinically significant neuropathy. One partial response was seen in a patient with advanced adenocarcinoma of the oesophago-gastric junction and 12 patients had stable disease with a median time to progression of 184 days (range 60–506 days). The recommended phase II dose in pretreated patients is Carboplatin AUC 5 and DHA–paclitaxel 660 mg m-2 given every 21 days. Further studies with Carboplatin AUC 5 and DHA-paclitaxel 880 mg m-2, given every 28 days, are warranted in chemo-naive patients

    Sustained platelet-sparing effect of weekly low dose paclitaxel allows effective, tolerable delivery of extended dose dense weekly carboplatin in platinum resistant/refractory epithelial ovarian cancer

    Get PDF
    Background: Platinum agents have shown demonstrable activity in the treatment of patients with platinum resistant, recurrent ovarian cancer when delivered in a "dose-dense" fashion. However, the development of thrombocytopenia limits the weekly administration of carboplatin to no greater than AUC 2. Paclitaxel has a well-described platelet sparing effect however its use to explicitly provide thromboprotection in the context of dose dense carboplatin has not been explored. Methods: We treated seven patients with platinum resistant ovarian cancer who had previously received paclitaxel or who had developed significant peripheral neuropathy precluding the use of further full dose weekly paclitaxel. Results: We were able to deliver carboplatin AUC 3 and paclitaxel 20 mg/m(2) with no thrombocytopenia or worsening of neuropathic side-effects, and with good activity. Conclusions: We conclude that this regimen may be feasible and active, and could be formally developed as a "platinum-focussed dose-dense scaffold" into which targeted therapies that reverse platinum resistance can be incorporated, and merits further evaluation

    Maturation of SARS-CoV-2 Spike-specific memory B cells drives resilience to viral escape

    Full text link
    SUMMARYMemory B cells (MBCs) generate rapid antibody responses upon secondary encounter with a pathogen. Here, we investigated the kinetics, avidity and cross-reactivity of serum antibodies and MBCs in 155 SARS-CoV-2 infected and vaccinated individuals over a 16-month timeframe. SARS-CoV-2-specific MBCs and serum antibodies reached steady-state titers with comparable kinetics in infected and vaccinated individuals. Whereas MBCs of infected individuals targeted both pre- and postfusion Spike (S), most vaccine-elicited MBCs were specific for prefusion S, consistent with the use of prefusion-stabilized S in mRNA vaccines. Furthermore, a large fraction of MBCs recognizing postfusion S cross-reacted with human betacoronaviruses. The avidity of MBC-derived and serum antibodies increased over time resulting in enhanced resilience to viral escape by SARS-CoV-2 variants, including Omicron BA.1 and BA.2 sub-lineages, albeit only partially for BA.4 and BA.5 sublineages. Overall, the maturation of high-affinity and broadly-reactive MBCs provides the basis for effective recall responses to future SARS-CoV-2 variants

    Maturation of SARS-CoV-2 Spike-specific memory B cells drives resilience to viral escape

    No full text
    Memory B cells (MBCs) generate rapid antibody responses upon secondary encounter with a pathogen. Here, we investigated the kinetics, avidity, and cross-reactivity of serum antibodies and MBCs in 155 SARS-CoV-2 infected and vaccinated individuals over a 16-month time frame. SARS-CoV-2-specific MBCs and serum antibodies reached steady-state titers with comparable kinetics in infected and vaccinated individuals. Whereas MBCs of infected individuals targeted both prefusion and postfusion Spike (S), most vaccine-elicited MBCs were specific for prefusion S, consistent with the use of prefusion-stabilized S in mRNA vaccines. Furthermore, a large fraction of MBCs recognizing postfusion S cross-reacted with human betacoronaviruses. The avidity of MBC-derived and serum antibodies increased over time resulting in enhanced resilience to viral escape by SARS-CoV-2 variants, including Omicron BA.1 and BA.2 sublineages, albeit only partially for BA.4 and BA.5 sublineages. Overall, the maturation of high-affinity and broadly reactive MBCs provides the basis for effective recall responses to future SARS-CoV-2 variants.ISSN:2589-004
    corecore