8,112 research outputs found
Radiation noise in a high sensitivity star sensor
An extremely accurate attitude determination was developed for space applications. This system uses a high sensitivity star sensor in which the photomultiplier tube is subject to noise generated by space radiations. The space radiation induced noise arises from trapped electrons, solar protons and other ionizing radiations, as well as from dim star background. The solar activity and hence the electron and proton environments are predicted through the end of the twentieth century. The available data for the response of the phototube to proton, electron, gamma ray, and bremsstrahlung radiations are reviewed and new experimental data is presented. A simulation was developed which represents the characteristics of the effect of radiations on the star sensor, including the non-stationarity of the backgrounds
The calculated effect of trailing-edge flaps on the take-off of flying boats
The results of take-off calculations are given for an application of simple trailing-edge flaps to two hypothetical flying boats, one having medium wing and power loading and consequently considerable excess of thrust over total resistance during the take-off run, the other having high wing and power loading and a very low excess thrust. For these seaplanes the effect of downward flap settings was: (1) to increase the total resistance below the stalling speed, (2) to decrease the get-away speed, (3) to improve the take-off performance of the seaplane having considerable excess thrust, and (4) to hinder the take-off of the seaplane having low excess thrust. It is indicated that flaps would allow a decrease in the high angles of wing setting necessary with most seaplanes, provided that the excess thrust is not too low
Preparing Undergraduates for Research Careers: Using Astrobites in the Classroom
Because undergraduate participation in research is a longstanding and
increasingly important aspect of the career path for future scientists,
students can benefit from additional resources to introduce them to the culture
and process of research. We suggest the adoption of the web resource Astrobites
as a classroom tool to increase the preparation of undergraduate physics and
astronomy students for careers in research. We describe the content and
development of the website, discuss previous university courses that have made
use of Astrobites, and suggest additional strategies for using Astrobites in
the classroom.Comment: Published in the Astronomy Education Revie
Palladium, platinum, and gold distribution in serpentinite seamounts in the Mariana and Izu-Bonin forearcs: evidence from Leg 125 fluids and serpentinites
Palladium, platinum, and gold were analyzed for 20 interstitial water samples from Leg 125. No Pd or Pt was detected in fluids from serpentinite muds from Conical Seamount in the Mariana forearc, indicating that low-temperature seawater-peridotite interaction does not mobilize these elements into the serpentinizing fluids to levels above 0.10 parts per billion (ppb) in solution. However, Au may be mobilized in high pH solutions. In contrast, fluids from vitric-rich clays on the flanks of the Torishima Seamount in the Izu-Bonin forearc have Pd values of between 4.0 and 11.8 nmol/L, Pt values between 2.3 and 5.0 nmol/L and Au values between 126.9 and 1116.9 pmol/L. The precious metals are mobilized, and possibly adsorbed onto clay mineral surfaces, during diagenesis and burial of the volcanic-rich clays. Desorption during squeezing of the sediments may produce the enhanced precious metal concentrations in the analyzed fluids. The metals are mobilized in the fluids probably as neutral hydroxide, bisulfide, and ammonia complexes. Pt/Pd ratios are between 0.42 and 2.33, which is much lower than many of the potential sources for Pt and Pd but is consistent with the greater solubility of Pd compared with Pt in most natural low-temperature fluids
Coupled Cluster Treatment of the XY model
We study quantum spin systems in the 1D, 2D square and 3D cubic lattices with
nearest-neighbour XY exchange. We use the coupled-cluster method (CCM) to
calculate the ground-state energy, the T=0 sublattice magnetisation and the
excited state energies, all as functions of the anisotropy parameter .
We consider in detail and give some results for higher . In 1D these
results are compared with the exact results and in 2D with Monte-Carlo
and series expansions. We obtain critical points close to the expected value
and our extrapolated LSUBn results for the ground-state energy are
well converged for all except very close to the critical point.Comment: 11 pages, Latex, 4 postscript figure, accepted by J.Phys.: Condens.
Matte
Palladium, platinum, and gold distribution in serpentinite seamounts in the Mariana and Izu-Bonin forearcs: evidence from Leg 125 fluids and serpentinites
Palladium, platinum, and gold were analyzed for 20 interstitial water samples from Leg 125. No Pd or Pt was detected in fluids from serpentinite muds from Conical Seamount in the Mariana forearc, indicating that low-temperature seawater-peridotite interaction does not mobilize these elements into the serpentinizing fluids to levels above 0.10 parts per billion (ppb) in solution. However, Au may be mobilized in high pH solutions. In contrast, fluids from vitric-rich clays on the flanks of the Torishima Seamount in the Izu-Bonin forearc have Pd values of between 4.0 and 11.8 nmol/L, Pt values between 2.3 and 5.0 nmol/L and Au values between 126.9 and 1116.9 pmol/L. The precious metals are mobilized, and possibly adsorbed onto clay mineral surfaces, during diagenesis and burial of the volcanic-rich clays. Desorption during squeezing of the sediments may produce the enhanced precious metal concentrations in the analyzed fluids. The metals are mobilized in the fluids probably as neutral hydroxide, bisulfide, and ammonia complexes. Pt/Pd ratios are between 0.42 and 2.33, which is much lower than many of the potential sources for Pt and Pd but is consistent with the greater solubility of Pd compared with Pt in most natural low-temperature fluids
Absolute absorption cross sections of ozone at 300 K, 228 K and 195 K in the wavelength region 185-240 nm
An account is given of progress of work on absorption cross section measurements of ozone at 300 K, 228 K and 195 K in the wavelength region 185-240 nm. In this wavelength region, the penetration of solar radiation into the Earth's atmosphere is controlled by O2 and O3. The transmitted radiation is available to dissociate trace species such as halocarbons and nitrous oxide. We have recently measured absolute absorption cross sections of O3 in the wavelength region 240-350 nm (Freeman et al., 1985; Yoshino et al., 1988). We apply these proven techniques to the determination of the absorption cross section of O3 at 300 K, 228 K and 195 K throughout the wavelength region 185-240 nm. A paper titled 'Absolute Absorption Cross Section Measurements of Ozone in the Wavelength Region 185-254 nm and the Temperature Dependence' has been submitted for publication in the Journal of Geophysical Research
Determination of spectroscopic properties of atmospheric molecules from high resolution vacuum ultraviolet cross section and wavelength measurements
Progress is given on work on: cross section measurements in the transmission window regions of the Schumann-Runge bands of oxygen; the determinations of predissociation linewidths; the theoretical calculation of band oscillator strengths of the Schumann-Runge absorption bands of O-16O-18; the determination of molecular spectroscopic constants; and the combined Herzberg continuum cross sections. The experimental investigations relevant to the cross section measurements, predissociation linewidths, and molecular spectroscopic constants are effected at high resolution with a 6.65 m scanning spectrometer which is, by virtue of its small instrumental width (FWHM = 0.0013 nm), suitable for cross section measurements of molecular bands with discrete rotational structure. Such measurements are needed for accurate calculations of the stratospheric production of atomic oxygen and heavy ozone formed following the photo-predissociation of O-16O-18 by solar radiation penetrating between the absorption lines of O-16(sub 2)
Rocket investigation of the auroral green line
Dissociative excitation and recombination reactions of atomic oxygen by auroral electrons, related to auroral green lin
Rocket spectrometer for investigation of the far ultraviolet solar spectrum
A rocket-borne Ebert spectrometer and telescope were used for analysis of the solar spectrum. The instrument was arranged in the high resolution line scanning mode. Selected emission lines between 1170 and 1640 A were scanned, and a complete wavelength scan was made from 1170 A to 1850 A. Accurate measurements were made of the line profiles of the He II lines at 1640 A, C IV lines at 1550 A, Si IV lines at 1400 A, C II lines at 1335 A, the N V lines at 1240 A, and the C III lines at 1175 A. Accurate intensity measurements of the quiet sun spectrum for wavelengths between 1174 A and 3220 A were obtained. Spectral resolution was better than 0.03 A over most of the range and spatial resolution was relatively low so that the observations are averaged over the chromospheric network. Plots of absolute intensity versus wave length were prepared for the full wavelength range of the observations
- …