1,095 research outputs found

    Geomagnetic activity forcing of the Northern Annular Mode via the stratosphere

    Get PDF
    We consider various aspects of the link between solar-modulated geomagnetic activity and the Northern Annular Mode (NAM). Our results indicate that the geomagnetic forcing of atmospheric circulation in the Northern Hemisphere is temporally and seasonally restricted, modulated by the Quasi-Biennial Oscillation (QBO), and reliant on stratosphere-troposphere coupling. When the data are restricted to January values after 1965, for years in which the January QBO is eastwards, the correlation coefficient between the geomagnetic AA index and the NAM is 0.85. These results can account for many of the enigmatic features of Northern Hemisphere circulation.<br><br> <b>Key words.</b> Meterology and atmospheric dynamics (general circulation, climatology

    Effects of vertical vibration on hopper flows of granular material

    Get PDF
    The discharge of granular material from a hopper subject to vertical sinusoidal oscillations was investigated using experiments and discrete element computer simulations. With the hopper exit closed, side-wall convection cells are observed, oriented such that particles move up along the inclined walls of the hopper and down at the center line. The convection cells are a result of the granular bed dilation during free fall and the subsequent interaction with the hopper walls. The mass discharge rate for a vibrating hopper scaled by the discharge rate without vibration reaches a maximum value at a dimensionless velocity amplitude just greater than 1. Further increases in the velocity decrease the discharge rate. The decrease occurs due to a decrease in the bulk density of the discharging material when vibration is applied

    Growth inhibition of Friend erythroleukaemia cell tumours in vivo by a synthetic analogue of prostaglandin A: an action independent of natural killer-activity.

    Get PDF
    Prostaglandins of the A series (PGAs) have been previously shown to inhibit the growth and to stimulate the differentiation of Friend erythroleukaemic cells (FLC) in vitro. In the present report we analysed the effect of PGA treatment in vitro on FLC tumorigenicity, and in vivo on FLC proliferation and on natural killer (NK) activity. PGA1 pretreatment of FLC in vitro for 5 days before inoculation into syngeneic mice slightly delayed tumour appearance, but did not significantly alter the pattern of tumour growth or mice survival, indicating that PGA1, at least in the conditions studied, did not affect FLC tumorigenicity. Daily treatment of mice with a long-acting synthetic analogue of PGA2 (16, 16 dimethyl-PGA2-methyl ester, di-M-PGA2) delayed tumour appearance, inhibited tumour growth, as measured by tumour weight and diameter, and increased the median mice survival time by 15-35%, depending on the schedule of treatment. Daily treatment with di-M-PGA2 strongly suppressed NK activity in normal mice but had no significant effect in tumour-bearing immunodepressed mice. PGA treatment of effector or target cells in vitro, or PGA added during the NK assay, had no effect on NK activity. We suggest that the chemotherapeutic effect of PGA is due to a direct action on tumour cell replication rather than to a stimulation of the host NK activity

    An evaluation of airborne laser scan data for coalmine subsidence mapping

    Get PDF
    The accurate mapping of coalmine subsidence is necessary for the continued management of potential subsidence impacts. The use of airborne laser scan (ALS) data for subsidence mapping provides an alternative method to traditional ground-based approaches that affords increased accessibility and complete spatial coverage. This paper evaluates the suitability and potential of ALS data for subsidence mapping, primarily through the examination of two pre-mining surveys in a rugged, densely vegetated study site. Data quality, in terms of mean point spacing and coverage, is evaluated, along with the impact of interpolation methods, resolution, and terrain. It was assumed that minimal surface height changes occurred between the two pre-mining surfaces. Therefore any height changes between digital elevation models of the two ALS surveys were interpreted as errors associated with the use of ALS data for subsidence mapping. A mean absolute error of 0.23 m was observed, though this error may be exaggerated by the presence of a systematic 0.15 m offset between the two surveys. Very large (several metres) errors occur in areas of steep or dynamic terrain, such as along cliff lines and watercourses. Despite these errors, preliminary subsidence mapping, performed using a third, post-mining dataset, clearly demonstrates the potential benefits of ALS data for subsidence mapping, as well as some potential limitations and the need for further careful assessment and validation concerning data errors

    In situ monitoring of moisture uptake of flax fiber reinforced composites under humid/dry conditions

    Get PDF
    The use of green materials such as natural fiber-reinforced composites represents an increasingly stringent prerogative in the future planning of industrial and non-industrial production. The optimization of these materials is the main aim of the current research, focused on the evaluation of the behavior of flax fiber reinforced composites exposed to isothermal adsorption and desorption cycles, at varying the partial pressure of water vapor (P/P0). For this purpose, the moisture uptake and the morphology changes of the composite material and their constituents were in situ monitored through a measurement protocol, by using a dynamic vapor sorption (DVS) analysis, coupled with an environmental scanning electron microscopy (ESEM) visual investigation. A dependence of moisture uptake and diffusivity on the composite morphology was clearly detected. In particular, no significant variation in the morphology of the specimen is noticed at low water vapor partial pressure (i.e., P/P0 up to 5.4%) due to the limited absorption capacity (i.e., lower than 1%). On the other hand, fibers morphology changes at increasing the partial pressure up to 25.1%, showing a sensitive increase in volume. This phenomenon becomes much more relevant for high relative humidity values (i.e., ~90%), reaching more than 6% of absorption capacity

    Skeletal Anomaly Monitoring in Rainbow Trout (Oncorhynchus mykiss, Walbaum 1792) Reared under Different Conditions

    Get PDF
    The incidence of skeletal anomalies could be used as an indicator of the "quality" of rearing conditions as these anomalies are thought to result from the inability of homeostatic mechanisms to compensate for environmentally-induced stress and/or altered genetic factors. Identification of rearing conditions that lower the rate of anomalies can be an important step toward profitable aquaculture as malformed market-size fish have to be discarded, thus reducing fish farmers' profits. In this study, the occurrence of skeletal anomalies in adult rainbow trout grown under intensive and organic conditions was monitored. As organic aquaculture animal production is in its early stages, organic broodstock is not available in sufficient quantities. Non-organic juveniles could, therefore, be used for on-growing purposes in organic aquaculture production cycle. Thus, the adult fish analysed in this study experienced intensive conditions during juvenile rearing. Significant differences in the pattern of anomalies were detected between organically and intensively-ongrown specimens, although the occurrence of severe, commercially important anomalies, affecting 2-12.5% of individuals, was comparable in the two systems. Thus, organic aquaculture needs to be improved in order to significantly reduce the incidence of severe anomalies in rainbow trout

    Using Proanthocyanidin as a Root Dentin Conditioner for GIC Restorations

    Get PDF
    Glass ionomer cements (GICs) are considered the material of choice for restoration of root carious lesions (RCLs). When bonding to demineralized dentin, the collapse of dentinal collagen during restorative treatment may pose challenges. Considering its acidic nature and collagen biomodification effects, proanthocyanidin (PAC) could be potentially used as a dentin conditioner to remove the smear layer while simultaneously acting to biomodify the dentinal collagen involved in the bonding interface. In this study, 6.5% w/v PAC was used as a conditioner for sound (SD) and laboratory demineralized (DD) root dentin before bonding to resin-modified GIC (FII), casein phosphopeptide-amorphous calcium phosphate (CPP-ACP)-modified GIC (FVII), or a high-viscosity GIC (FIX). Root dentin conditioned with deionized distilled water (DDW) or polyacrylic acid (PAA) served as controls. Results indicated FII showed higher shear bond strength (SBS) on SD than the other 2 GICs, especially in PAA-conditioned samples; FIX showed significantly higher SBS than FII and FVII on PAA- or PAC-conditioned DD. In each category of GIC, PAA and PAC did not have a significant influence on SBS in most cases compared to DDW except for a significant decrease in PAC-conditioned SD bonded to FII and a significant increase in PAA-conditioned DD bonded to FIX. The bonding interface between GIC and SD was generally more resistant to the acid-base challenge than DD. Although the alterations in failure modes indicated a compromised interfacial interaction between GICs and PAC-treated root dentin, biomodification effects of PAC on dentin were observed from Raman microspectroscopy analysis in terms of the changes in mineral-to-matrix ratio and hydroxyproline-to-proline ratio of dentin adjacent to the bonding interface, especially of DD. Results from this study also indicated the possibility of using in situ characterization such as Raman microspectroscopy as a complementary approach to SBS test to investigate the integrity of the bonding interface

    Dietary and protective factors to halt or mitigate progression of autoimmunity, covid-19 and its associated metabolic diseases

    Get PDF
    COVID-19 is without any doubt the worst pandemic we have faced since the H1N1 virus outbreak. Even if vaccination against SARS-CoV-2 infection is becoming increasingly available, a more feasible approach for COVID-19 prevention and therapy is still needed. Evidence of a pathological link between metabolic diseases and severe forms of COVID-19 has stimulated critical reflection and new considerations. In particular, an abnormal immune response observed in certain patients with SARS-CoV-2 infection suggested possible common predisposing risk factors with autoimmune diseases such as Type 1 Diabetes (T1D). Correct supplementation with dietary factors may be key to preventing and counteracting both the underlying metabolic impairment and the complications of COVID-19. A set of agents may inhibit the cytokine storm and hypercoagulability that characterize severe COVID-19 infection: vitamin D3, omega-3 polyunsaturated fatty acids, polyphenols like pterostilbene, polydatin and honokiol, which can activate anti-inflammatory and antioxidant sirtuins pathways, quercetin, vitamin C, zinc, melatonin, lactoferrin and glutathione. These agents could be highly beneficial for subjects who have altered immune responses. In this review, we discuss the antiviral and metabolic effects of these dietary factors and propose their combination for potential applications in the prevention and treatment of COVID-19. Rigorous studies will be fundamental for validating preventive and therapeutic protocols that could be of assistance to mitigate disease progression following SARS-CoV-2 infection

    Design of an epithermal column for BNCT based on D–D fusion neutron facility

    Get PDF
    Abstract Boron Neutron Capture Therapy (BNCT) is currently performed on patients at nuclear reactors. At the same time the international BNCT community is engaged in the development of alternative facilities for in-hospital treatments. This paper investigates the potential of a novel high-output D–D neutron generator, developed at Lawrence Berkeley National Laboratory (CA, USA), for BNCT. The simulation code MCNP-4C is used to realize an accurate study of the epithermal column in view of the treatment of deep tumours. Different materials and Beam Shaping Assemblies (BSA) are investigated and an optimized configuration is proposed. The neutron beam quality is defined by the standard free beam parameters, calculated averaging over the collimator aperture. The results are discussed and compared with the performances of other facilities
    • …
    corecore