3,420 research outputs found

    Noether Current, Horizon Virasoro Algebra and Entropy

    Get PDF
    We provide a simple and straightforward procedure for defining a Virasoro algebra based on the diffeomorphisms near a null surface in a spacetime and obtain the entropy density of the null surface from its central charge. We use the off-shell Noether current corresponding to the diffeomorphism invariance of a gravitational Lagrangian L(gab,Rabcd)L(g_{ab},R_{abcd}) and define the Virasoro algebra from its variation. This allows us to identify the central charge and the zero mode eigenvalue using which we obtain the entropy density of the Killing horizon. Our approach works for all Lanczos-Lovelock models and reproduces the correct Wald entropy. The entire analysis is done off-shell without using the field equations and allows us to define an entropy density for any null surface which acts as a local Rindler horizon for a particular class of observers.Comment: V2: to appear in Phys. Rev.

    Gravity: A New Holographic Perspective

    Get PDF
    A general paradigm for describing classical (and semiclassical) gravity is presented. This approach brings to the centre-stage a holographic relationship between the bulk and surface terms in a general class of action functionals and provides a deeper insight into several aspects of classical gravity which have no explanation in the conventional approach. After highlighting a series of unresolved issues in the conventional approach to gravity, I show that (i) principle of equivalence, (ii) general covariance and (iii)a reasonable condition on the variation of the action functional, suggest a generic Lagrangian for semiclassical gravity of the form L=QabcdRbcdaL=Q_a^{bcd}R^a_{bcd} with bQabcd=0\nabla_b Q_a^{bcd}=0. The expansion of QabcdQ_a^{bcd} in terms of the derivatives of the metric tensor determines the structure of the theory uniquely. The zeroth order term gives the Einstein-Hilbert action and the first order correction is given by the Gauss-Bonnet action. Any such Lagrangian can be decomposed into a surface and bulk terms which are related holographically. The equations of motion can be obtained purely from a surface term in the gravity sector. Hence the field equations are invariant under the transformation TabTab+λgabT_{ab} \to T_{ab} + \lambda g_{ab} and gravity does not respond to the changes in the bulk vacuum energy density. The cosmological constant arises as an integration constant in this approach. The implications are discussed.Comment: Plenary talk at the International Conference on Einstein's Legacy in the New Millennium, December 15 - 22, 2005, Puri, India; to appear in the Proceedings to be published in IJMPD; 16 pages; no figure

    Combining general relativity and quantum theory: points of conflict and contact

    Get PDF
    The issues related to bringing together the principles of general relativity and quantum theory are discussed. After briefly summarising the points of conflict between the two formalisms I focus on four specific themes in which some contact has been established in the past between GR and quantum field theory: (i) The role of planck length in the microstructure of spacetime (ii) The role of quantum effects in cosmology and origin of the universe (iii) The thermodynamics of spacetimes with horizons and especially the concept of entropy related to spacetime geometry (iv) The problem of the cosmological constant.Comment: Invited Talk at "The Early Universe and Cosmological Observations: a Critical Review", UCT, Cape Town, 23-25 July,2001; to appear in Class.Quan.Gra

    A new perspective on Gravity and the dynamics of Spacetime

    Full text link
    The Einstein-Hilbert action has a bulk term and a surface term (which arises from integrating a four divergence). I show that one can obtain Einstein's equations from the surface term alone. This leads to: (i) a novel, completely self contained, perspective on gravity and (ii) a concrete mathematical framework in which the description of spacetime dynamics by Einstein's equations is similar to the description of a continuum solid in the thermodynamic limit.Comment: Based on the Essay selected for Honorable Mention in the Gravity Research Foundation Essay Contest, 2005; to appear in the special issue of IJMP

    Surface Density of Spacetime Degrees of Freedom from Equipartition Law in theories of Gravity

    Full text link
    I show that the principle of equipartition, applied to area elements of a surface which are in equilibrium at the local Davies-Unruh temperature, allows one to determine the surface number density of the microscopic spacetime degrees of freedom in any diffeomorphism invariant theory of gravity. The entropy associated with these degrees of freedom matches with the Wald entropy for the theory. This result also allows one to attribute an entropy density to the spacetime in a natural manner. The field equations of the theory can then be obtained by extremising this entropy. Moreover, when the microscopic degrees of freedom are in local thermal equilibrium, the spacetime entropy of a bulk region resides on its boundary.Comment: v1: 20 pages; no figures. v2: Sec 4 added; 23 page

    Why Does Gravity Ignore the Vacuum Energy?

    Get PDF
    The equations of motion for matter fields are invariant under the shift of the matter lagrangian by a constant. Such a shift changes the energy momentum tensor of matter by T^a_b --> T^a_b +\rho \delta^a_b. In the conventional approach, gravity breaks this symmetry and the gravitational field equations are not invariant under such a shift of the energy momentum tensor. I argue that until this symmetry is restored, one cannot obtain a satisfactory solution to the cosmological constant problem. I describe an alternative perspective to gravity in which the gravitational field equations are [G_{ab} -\kappa T_{ab}] n^an^b =0 for all null vectors n^a. This is obviously invariant under the change T^a_b --> T^a_b +\rho \delta^a_b and restores the symmetry under shifting the matter lagrangian by a constant. These equations are equivalent to G_{ab} = \kappa T_{ab} + Cg_{ab} where C is now an integration constant so that the role of the cosmological constant is very different in this approach. The cosmological constant now arises as an integration constant, somewhat like the mass M in the Schwarzschild metric, the value of which can be chosen depending on the physical context. These equations can be obtained from a variational principle which uses the null surfaces of spacetime as local Rindler horizons and can be given a thermodynamic interpretation. This approach turns out to be quite general and can encompass even the higher order corrections to Einstein's gravity and suggests a principle to determine the form of these corrections in a systematic manner.Comment: Invited Contribution to the IJMPD Special Issue on Dark Matter and Dark Energy edited by D.Ahluwalia and D. Grumiller. Appendix clarifies several conceptual and pedgogical aspects of surface term in Hilbert action; ver.2: references and some clarifications adde

    Dark Energy and Gravity

    Full text link
    I review the problem of dark energy focusing on the cosmological constant as the candidate and discuss its implications for the nature of gravity. Part 1 briefly overviews the currently popular `concordance cosmology' and summarises the evidence for dark energy. It also provides the observational and theoretical arguments in favour of the cosmological constant as the candidate and emphasises why no other approach really solves the conceptual problems usually attributed to the cosmological constant. Part 2 describes some of the approaches to understand the nature of the cosmological constant and attempts to extract the key ingredients which must be present in any viable solution. I argue that (i)the cosmological constant problem cannot be satisfactorily solved until gravitational action is made invariant under the shift of the matter lagrangian by a constant and (ii) this cannot happen if the metric is the dynamical variable. Hence the cosmological constant problem essentially has to do with our (mis)understanding of the nature of gravity. Part 3 discusses an alternative perspective on gravity in which the action is explicitly invariant under the above transformation. Extremizing this action leads to an equation determining the background geometry which gives Einstein's theory at the lowest order with Lanczos-Lovelock type corrections. (Condensed abstract).Comment: Invited Review for a special Gen.Rel.Grav. issue on Dark Energy, edited by G.F.R.Ellis, R.Maartens and H.Nicolai; revtex; 22 pages; 2 figure

    Effective mass suppression upon complete spin-polarization in an isotropic two-dimensional electron system

    Full text link
    We measure the effective mass (m*) of interacting two-dimensional electrons confined to a 4.5 nm-wide AlAs quantum well. The electrons in this well occupy a single out-of-plane conduction band valley with an isotropic in-plane Fermi contour. When the electrons are partially spin polarized, m* is larger than its band value and increases as the density is reduced. However, as the system is driven to full spin-polarization via the application of a strong parallel magnetic field, m* is suppressed down to values near or even below the band mass. Our results are consistent with the previously reported measurements on wide AlAs quantum wells where the electrons occupy an in-plane valley with an anisotropic Fermi contour and effective mass, and suggest that the effective mass suppression upon complete spin polarization is a genuine property of interacting two-dimensional electrons.Comment: 6 pages, 7 figures, accepted for publication in Phys. Rev.

    Holography of Gravitational Action Functionals

    Get PDF
    Einstein-Hilbert (EH) action can be separated into a bulk and a surface term, with a specific ("holographic") relationship between the two, so that either can be used to extract information about the other. The surface term can also be interpreted as the entropy of the horizon in a wide class of spacetimes. Since EH action is likely to just the first term in the derivative expansion of an effective theory, it is interesting to ask whether these features continue to hold for more general gravitational actions. We provide a comprehensive analysis of lagrangians of the form L=Q_a^{bcd}R^a_{bcd}, in which Q_a^{bcd} is a tensor with the symmetries of the curvature tensor, made from metric and curvature tensor and satisfies the condition \nabla_cQ^{abcd}=0, and show that they share these features. The Lanczos-Lovelock lagrangians are a subset of these in which Q^{abcd} is a homogeneous function of the curvature tensor. They are all holographic, in a specific sense of the term, and -- in all these cases -- the surface term can be interpreted as the horizon entropy. The thermodynamics route to gravity, in which the field equations are interpreted as TdS=dE+pdV, seems to have greater degree of validity than the field equations of Einstein gravity itself. The results suggest that the holographic feature of EH action could also serve as a new symmetry principle in constraining the semiclassical corrections to Einstein gravity. The implications are discussed.Comment: revtex 4; 17 pages; no figure

    511 KeV Photons From Color Superconducting Dark Matter

    Full text link
    We discuss the possibility that the recent detection of 511 keV gamma rays from the galactic bulge, as observed by INTEGRAL, can be naturally explained by the supermassive very dense droplets (strangelets) of dark matter. These droplets are assumed to be made of ordinary light quarks (or antiquarks) condensed in non-hadronic color superconducting phase. The droplets can carry electrons (or positrons) in the bulk or/and on the surface. The e^+e^- annihilation events take place due to the collisions of electrons from the visible matter with positrons from dark matter droplets which may result in the bright 511 KeV gamma-ray line from the bulge of the Galaxy.Comment: Final version to appear in PRL. Added: estimation of the width, 3Ke
    corecore