5 research outputs found

    Evaluating neural networks as a method for identifying students in need of assistance

    Full text link
    © 2017 ACM. Course instructors need to be able to identify students in need of assistance as early in the course as possible. Recent work has suggested that machine learning approaches applied to snapshots of small programming exercises may be an effective solution to this problem. However, these results have been obtained using data from a single institution, and prior work using features extracted from student code has been highly sensitive to differences in context. This work provides two contributions: first, a partial reproduction of previously published results, but in a different context, and second, an exploration of the efficacy of neural networks in solving this problem. Our findings confirm the importance of two features (the number of steps required to solve a problem and the correctness of key problems), indicate that machine learning techniques are relatively stable across contexts (both across terms in a single course and across courses), and suggest that neural network based approaches are as effective as the best Bayesian and decision tree methods. Furthermore, neural networks can be tuned to be reliably pessimistic, so they may serve a complementary role in solving the problem of identifying students who need assistance

    Using Bayesian Networks and Machine Learning to Predict Computer Science Success

    Get PDF
    Bayesian Networks and Machine Learning techniques were evaluated and compared for predicting academic performance of Computer Science students at the University of Cape Town. Bayesian Networks performed similarly to other classification models. The causal links AQ1 inherent in Bayesian Networks allow for understanding of the contributing factors for academic success in this field. The most effective indicators of success in first-year ‘core’ courses in Computer Science included the student’s scores for Mathematics and Physics as well as their aptitude for learning and their work ethos. It was found that unsuccessful students could be identified with ≈91% accuracy. This could help to increase throughput as well as student wellbeing at university
    corecore