235 research outputs found
Distribution of partition function zeros of the model on the Bethe lattice
The distribution of partition function zeros is studied for the model
of spin glasses on the Bethe lattice. We find a relation between the
distribution of complex cavity fields and the density of zeros, which enables
us to obtain the density of zeros for the infinite system size by using the
cavity method. The phase boundaries thus derived from the location of the zeros
are consistent with the results of direct analytical calculations. This is the
first example in which the spin glass transition is related to the distribution
of zeros directly in the thermodynamical limit. We clarify how the spin glass
transition is characterized by the zeros of the partition function. It is also
shown that in the spin glass phase a continuous distribution of singularities
touches the axes of real field and temperature.Comment: 23 pages, 12 figure
Statistical mechanical analysis of a hierarchical random code ensemble in signal processing
We study a random code ensemble with a hierarchical structure, which is
closely related to the generalized random energy model with discrete energy
values. Based on this correspondence, we analyze the hierarchical random code
ensemble by using the replica method in two situations: lossy data compression
and channel coding. For both the situations, the exponents of large deviation
analysis characterizing the performance of the ensemble, the distortion rate of
lossy data compression and the error exponent of channel coding in Gallager's
formalism, are accessible by a generating function of the generalized random
energy model. We discuss that the transitions of those exponents observed in
the preceding work can be interpreted as phase transitions with respect to the
replica number. We also show that the replica symmetry breaking plays an
essential role in these transitions.Comment: 24 pages, 4 figure
Replica analysis of partition-function zeros in spin-glass models
We study the partition-function zeros in mean-field spin-glass models. We
show that the replica method is useful to find the locations of zeros in a
complex parameter plane. For the random energy model, we obtain the phase
diagram in the plane and find that there are two types of distribution of
zeros: two-dimensional distribution within a phase and one-dimensional one on a
phase boundary. Phases with a two-dimensional distribution are characterized by
a novel order parameter defined in the present replica analysis. We also
discuss possible patterns of distributions by studying several systems.Comment: 23 pages, 12 figures; minor change
On analyticity with respect to the replica number in random energy models I: an exact expression of the moment of the partition function
We provide an exact expression of the moment of the partition function for
random energy models of finite system size, generalizing an earlier expression
for a grand canonical version of the discrete random energy model presented by
the authors in Prog. Theor. Phys. 111, 661 (2004). The expression can be
handled both analytically and numerically, which is useful for examining how
the analyticity of the moment with respect to the replica numbers, which play
the role of powers of the moment, can be broken in the thermodynamic limit. A
comparison with a replica method analysis indicates that the analyticity
breaking can be regarded as the origin of the one-step replica symmetry
breaking. The validity of the expression is also confirmed by numerical methods
for finite systems.Comment: 16 pages, 4 figure
The Infrared Imaging Spectrograph (IRIS) for TMT: Instrument Overview
We present an overview of the design of IRIS, an infrared (0.84 - 2.4 micron)
integral field spectrograph and imaging camera for the Thirty Meter Telescope
(TMT). With extremely low wavefront error (<30 nm) and on-board wavefront
sensors, IRIS will take advantage of the high angular resolution of the narrow
field infrared adaptive optics system (NFIRAOS) to dissect the sky at the
diffraction limit of the 30-meter aperture. With a primary spectral resolution
of 4000 and spatial sampling starting at 4 milliarcseconds, the instrument will
create an unparalleled ability to explore high redshift galaxies, the Galactic
center, star forming regions and virtually any astrophysical object. This paper
summarizes the entire design and basic capabilities. Among the design
innovations is the combination of lenslet and slicer integral field units, new
4Kx4k detectors, extremely precise atmospheric dispersion correction, infrared
wavefront sensors, and a very large vacuum cryogenic system.Comment: Proceedings of the SPIE, 9147-76 (2014
The Infrared Imaging Spectrograph (IRIS) for TMT: Optical design of IRIS imager with "co-axis double TMA"
IRIS (InfraRed Imaging Spectrograph) is one of the first-generation instruments for the Thirty Meter Telescope (TMT). IRIS is composed of a combination of near-infrared (0.84-2.4 ÎŒm) diffraction limited imager and integral field spectrograph. To achieve near-diffraction limited resolutions in the near-infrared wavelength region, IRIS uses the advanced adaptive optics system NFIRAOS (Narrow Field Infrared Adaptive Optics System) and integrated on-instrument wavefront sensors (OIWFS). However, IRIS itself has challenging specifications. First, the overall system wavefront error should be less than 40 nm in Y, z, J, and H-band and 42 nm in K-band over a 34.0 Ă 34.0 arcsecond field of view. Second, the throughput of the imager components should be more than 42 percent. To achieve the extremely low wavefront error and high throughput, all reflective design has been newly proposed. We have adopted a new design policy called "Co-Axis double-TMA", which cancels the asymmetric aberrations generated by "collimator/TMA" and "camera/TMA" efficiently. The latest imager design meets all specifications, and, in particular, the wavefront error is less than 17.3 nm and throughput is more than 50.8 percent. However, to meet the specification of wavefront error and throughput as built performance, the IRIS imager requires both mirrors with low surface irregularity after high-reflection coating in cryogenic and high-level Assembly Integration and Verification (AIV). To deal with these technical challenges, we have done the tolerance analysis and found that total pass rate is almost 99 percent in the case of gauss distribution and more than 90 percent in the case of parabolic distribution using four compensators. We also have made an AIV plan and feasibility check of the optical elements. In this paper, we will present the details of this optical syste
The infrared imaging spectrograph (IRIS) for TMT: status report for IRIS imager
The current status of IRIS imager at NAOJ is reported. IRIS (Infrared Imaging Spectrograph) is a first light instrument of TMT (Thirty Meter Telescope). IRIS has just passed the preliminary design review and moved forward to the final design phase. In this paper, optical and mechanical design of IRIS imager and prototyping activities conducted during the preliminary design phase are summarized
Belief Propagation for Error Correcting Codes and Lossy Compression Using Multilayer Perceptrons
The belief propagation (BP) based algorithm is investigated as a potential
decoder for both of error correcting codes and lossy compression, which are
based on non-monotonic tree-like multilayer perceptron encoders. We discuss
that whether the BP can give practical algorithms or not in these schemes. The
BP implementations in those kind of fully connected networks unfortunately
shows strong limitation, while the theoretical results seems a bit promising.
Instead, it reveals it might have a rich and complex structure of the solution
space via the BP-based algorithms.Comment: 18 pages, 18 figure
- âŠ