1,822 research outputs found

    Effects of submerged vegetation on water clarity across climates

    Get PDF
    A positive feedback between submerged vegetation and water clarity forms the backbone of the alternative state theory in shallow lakes. The water clearing effect of aquatic vegetation may be caused by different physical, chemical, and biological mechanisms and has been studied mainly in temperate lakes. Recent work suggests differences in biotic interactions between (sub)tropical and cooler lakes might result in a less pronounced clearing effect in the (sub)tropics. To assess whether the effect of submerged vegetation changes with climate, we sampled 83 lakes over a gradient ranging from the tundra to the tropics in South America. Judged from a comparison of water clarity inside and outside vegetation beds, the vegetation appeared to have a similar positive effect on the water clarity across all climatic regions studied. However, the local clearing effect of vegetation decreased steeply with the contribution of humic substances to the underwater light attenuation. Looking at turbidity on a whole-lake scale, results were more difficult to interpret. Although lakes with abundant vegetation (>30%) were generally clear, sparsely vegetated lakes differed widely in clarity. Overall, the effect of vegetation on water clarity in our lakes appears to be smaller than that found in various Northern hemisphere studies. This might be explained by differences in fish communities and their relation to vegetation. For instance, unlike in Northern hemisphere studies, we find no clear relation between vegetation coverage and fish abundance or their diet preference. High densities of omnivorous fish and coinciding low grazing pressures on phytoplankton in the (sub)tropics may, furthermore, weaken the effect of vegetation on water clarity

    On the usefulness of off-the-shelf computer peripherals for people with Parkinson’s Disease

    Get PDF
    People who suffer from Parkinson’s Disease face many challenges using computers, and mice are particularly problematic input devices. This article describes usability tests of standard peripherals for use by people with Parkinson’s Disease in order to search for optimal combinations relative to the needs of this user group. The results are used to determine their effect upon inertia, muscle stiffness, tremor, pain, strain and coordination and show that widely available equipment could significantly improve mouse pointer control for many users. The results reflect the diversity of challenges experienced by computer users with Parkinson’s Disease, and also illustrate how projector-based technology may improve computer interaction without risking strain injuries

    Kinetics of coherent order-disorder transition in Al3ZrAl_3 Zr

    Full text link
    Within a phase field approach which takes the strain-induced elasticity into account, the kinetics of the coherent order-disorder transition is investigated for the specific case of Al3ZrAl_3 Zr alloy. It is shown that a microstructure with cubic L12L1_2 precipitates appears as a transient state during the decomposition of a homogeneous disordered solid solution into a microstructure with tetragonal DO23DO_{23} precipitates embedded into a disordered matrix. At low enough temperature, favored by a weak internal stress, only L12L1_2 precipitates grow in the transient microstructure preceding nucleation of the DO23DO_{23} precipitates that occurs exclusively at the interface of the solid solution with the L12L1_2 precipitates. Analysis of microstructures at nanoscopic scale shows a characteristic rod shape for the DO23DO_{23} precipitates due to the combination of their tetragonal symmetry and their large internal stress.Comment: 2 postscript figures and 1 JPG pag

    Early warning of climate tipping points from critical slowing down: comparing methods to improve robustness

    Get PDF
    We address whether robust early warning signals can, in principle, be provided before a climate tipping point is reached, focusing on methods that seek to detect critical slowing down as a precursor of bifurcation. As a test bed, six previously analysed datasets are reconsidered, three palaeoclimate records approaching abrupt transitions at the end of the last ice age and three models of varying complexity forced through a collapse of the Atlantic thermohaline circulation. Approaches based on examining the lag-1 autocorrelation function or on detrended fluctuation analysis are applied together and compared. The effects of aggregating the data, detrending method, sliding window length and filtering bandwidth are examined. Robust indicators of critical slowing down are found prior to the abrupt warming event at the end of the Younger Dryas, but the indicators are less clear prior to the Bølling-Allerød warming, or glacial termination in Antarctica. Early warnings of thermohaline circulation collapse can be masked by inter-annual variability driven by atmospheric dynamics. However, rapidly decaying modes can be successfully filtered out by using a long bandwidth or by aggregating data. The two methods have complementary strengths and weaknesses and we recommend applying them together to improve the robustness of early warnings

    The Clumping Transition in Niche Competition: a Robust Critical Phenomenon

    Full text link
    We show analytically and numerically that the appearance of lumps and gaps in the distribution of n competing species along a niche axis is a robust phenomenon whenever the finiteness of the niche space is taken into account. In this case depending if the niche width of the species σ\sigma is above or below a threshold σc\sigma_c, which for large n coincides with 2/n, there are two different regimes. For σ>sigmac\sigma > sigma_c the lumpy pattern emerges directly from the dominant eigenvector of the competition matrix because its corresponding eigenvalue becomes negative. For σ</sigmac\sigma </- sigma_c the lumpy pattern disappears. Furthermore, this clumping transition exhibits critical slowing down as σ\sigma is approached from above. We also find that the number of lumps of species vs. σ\sigma displays a stair-step structure. The positions of these steps are distributed according to a power-law. It is thus straightforward to predict the number of groups that can be packed along a niche axis and it coincides with field measurements for a wide range of the model parameters.Comment: 16 pages, 7 figures; http://iopscience.iop.org/1742-5468/2010/05/P0500

    Structure of sufficient quantum coarse-grainings

    Full text link
    Let H and K be Hilbert spaces and T be a coarse-graining from B(H) to B(K). Assume that density matrices D_1 and D_2 acting on H are given. In the paper the consequences of the existence of a coarse-graining S from B(K) to B(H) satisfying ST(D_1)=D_1 and ST(D_2)=D_2 are given. (This condition means the sufficiency of T for D_1 and D_2.) Sufficiency implies a particular decomposition of the density matrices. This decomposition allows to deduce the exact condition for equality in the strong subadditivity of the von Neumann entropy.Comment: 13 pages, LATE

    Effect of quantum fluctuations on structural phase transitions in SrTiO_3 and BaTiO_3

    Full text link
    Using path-integral Monte Carol simulations and an ab initio effective Hamiltonian, we study the effects of quantum fluctuations on structural phase transitions in the cubic perovskite compounds SrTiO3 and BaTiO3. We find quantum fluctuations affect ferroelectric (FE) transitions more strongly than antiferrodistortive (AFD) ones, even though the effective mass of a single FE local mode is larger. For SrTiO3 we find that the quantum fluctuations suppress the FE transition completely, and reduce the AFD transition temperature from 130K to 110K. For BaTiO3, quantum fluctuations do not affect the order of the transition, but do reduce the transition temperature by 35-50 K. The implications of the calculations are discussed.Comment: Revtex (preprint style, 14 pages) + 2 postscript figures. A version in two-column article style with embedded figures is available at http://electron.rutgers.edu/~dhv/preprints/index.html#wz_qs
    corecore