1 research outputs found

    Magnetic Resonance Force Microscopy of paramagnetic electron spins at millikelvin temperatures

    Full text link
    Magnetic Resonance Force Microscopy (MRFM) is a powerful technique to detect a small number of spins that relies on force-detection by an ultrasoft magnetically tipped cantilever and selective magnetic resonance manipulation of the spins. MRFM would greatly benefit from ultralow temperature operation, because of lower thermomechanical noise and increased thermal spin polarization. Here, we demonstrate MRFM operation at temperatures as low as 30 mK, thanks to a recently developed SQUID-based cantilever detection technique which avoids cantilever overheating. In our experiment, we detect dangling bond paramagnetic centers on a silicon surface down to millikelvin temperatures. Fluctuations of such kind of defects are supposedly linked to 1/f magnetic noise and decoherence in SQUIDs as well as in several superconducting and single spin qubits. We find evidence that spin diffusion plays a key role in the low temperature spin dynamics.Comment: 7 pages, 5 figure
    corecore