2,405 research outputs found

    On the stochastic mechanics of the free relativistic particle

    Full text link
    Given a positive energy solution of the Klein-Gordon equation, the motion of the free, spinless, relativistic particle is described in a fixed Lorentz frame by a Markov diffusion process with non-constant diffusion coefficient. Proper time is an increasing stochastic process and we derive a probabilistic generalization of the equation (dτ)2=−1c2dXνdXν(d\tau)^2=-\frac{1}{c^2}dX_{\nu}dX_{\nu}. A random time-change transformation provides the bridge between the tt and the τ\tau domain. In the τ\tau domain, we obtain an \M^4-valued Markov process with singular and constant diffusion coefficient. The square modulus of the Klein-Gordon solution is an invariant, non integrable density for this Markov process. It satisfies a relativistically covariant continuity equation

    Willmore minimizers with prescribed isoperimetric ratio

    Full text link
    Motivated by a simple model for elastic cell membranes, we minimize the Willmore functional among two-dimensional spheres embedded in R^3 with prescribed isoperimetric ratio

    Entropy, time irreversibility and Schroedinger equation in a primarily discrete space-time

    Full text link
    In this paper we show that the existence of a primarily discrete space-time may be a fruitful assumption from which we may develop a new approach of statistical thermodynamics in pre-relativistic conditions. The discreetness of space-time structure is determined by a condition that mimics the Heisenberg uncertainty relations and the motion in this space-time model is chosen as simple as possible. From these two assumptions we define a path-entropy that measures the number of closed paths associated with a given energy of the system preparation. This entropy has a dynamical character and depends on the time interval on which we count the paths. We show that it exists an like-equilibrium condition for which the path-entropy corresponds exactly to the usual thermodynamic entropy and, more generally, the usual statistical thermodynamics is reobtained. This result derived without using the Gibbs ensemble method shows that the standard thermodynamics is consistent with a motion that is time-irreversible at a microscopic level. From this change of paradigm it becomes easy to derive a H−theoremH-theorem. A comparison with the traditional Boltzmann approach is presented. We also show how our approach can be implemented in order to describe reversible processes. By considering a process defined simultaneously by initial and final conditions a well defined stochastic process is introduced and we are able to derive a Schroedinger equation, an example of time reversible equation.Comment: latex versio

    Evolution of Topological Defects During Inflation

    Full text link
    Topological defects can be formed during inflation by phase transitions as well as by quantum nucleation. We study the effect of the expansion of the Universe on the internal structure of the defects. We look for stationary solutions to the field equations, i.e. solutions that depend only on the proper distance from the defect core. In the case of very thin defects, whose core dimensions are much smaller than the de Sitter horizon, we find that the solutions are well approximated by the flat space solutions. However, as the flat space thickness parameter δ0\delta_0 increases we notice a deviation from this, an effect that becomes dramatic as δ0\delta_0 approaches (H)−1/2(H)^{-1}/{\sqrt 2}. Beyond this critical value we find no stationary solutions to the field equations. We conclude that only defects that have flat space thicknesses less than the critical value survive, while thicker defects are smeared out by the expansion.Comment: 14 page

    Signal of the pion string at high-energy collisions

    Full text link
    We study the possible signals of a pion string associated with the QCD chiral phase transition in LHC Pb - Pb collision at energy s=5.5 \sqrt{s}=5.5 TeV. In terms of the Kibble-Zurek mechanism we discuss the production and evolution of the pion string. The pion string is not topologically stable, it decays into neutral pions and sigma mesons which in turn decay into pions. Our results show that all the neutral pions from the pion string are distributed at the low momentum and the ratio of neutral to charged pions from the pion string violates the isospin symmetry. For the momentum spectra of the total pions, the signal from the sigma particle decay which is from the pion string will be affected by the large decay width of the sigma significantly.Comment: 8 pages, 3 figures, one reference added, title changed, version accepted for publication in Phys. Rev.

    L\'evy-Schr\"odinger wave packets

    Full text link
    We analyze the time--dependent solutions of the pseudo--differential L\'evy--Schr\"odinger wave equation in the free case, and we compare them with the associated L\'evy processes. We list the principal laws used to describe the time evolutions of both the L\'evy process densities, and the L\'evy--Schr\"odinger wave packets. To have self--adjoint generators and unitary evolutions we will consider only absolutely continuous, infinitely divisible L\'evy noises with laws symmetric under change of sign of the independent variable. We then show several examples of the characteristic behavior of the L\'evy--Schr\"odinger wave packets, and in particular of the bi-modality arising in their evolutions: a feature at variance with the typical diffusive uni--modality of both the L\'evy process densities, and the usual Schr\"odinger wave functions.Comment: 41 pages, 13 figures; paper substantially shortened, while keeping intact examples and results; changed format from "report" to "article"; eliminated Appendices B, C, F (old names); shifted Chapters 4 and 5 (old numbers) from text to Appendices C, D (new names); introduced connection between Relativistic q.m. laws and Generalized Hyperbolic law

    Dynamical Shakeup of Planetary Systems II. N-body simulations of Solar System terrestrial planet formation induced by secular resonance sweeping

    Full text link
    We revisit the "dynamical shakeup" model of Solar System terrestrial planet formation, wherein the whole process is driven by the sweeping of Jupiter's secular resonance as the gas disk is removed. Using a large number of 0.5 Gyr-long N-body simulations, we investigate the different outcomes produced by such a scenario. We confirm that in contrast to existing models, secular resonance sweeping combined with tidal damping by the disk gas can reproduce the low eccentricities and inclinations, and high radial mass concentration, of the Solar System terrestrial planets. At the same time, this also drives the final assemblage of the planets on a timescale of several tens of millions of years, an order of magnitude faster than inferred from previous numerical simulations which neglected these effects, but possibly in better agreement with timescales inferred from cosmochemical data. In addition, we find that significant delivery of water-rich material from the outer Asteroid Belt is a natural byproduct.Comment: To appear in Ap

    Effect of pre-existing baryon inhomogeneities on the dynamics of quark-hadron transition

    Get PDF
    Baryon number inhomogeneities may be generated during the epoch when the baryon asymmetry of the universe is produced, e.g. at the electroweak phase transition. The regions with excess baryon number will have a lower temperature than the background temperature of the universe. Also the value of the quark hadron transition temperature TcT_c will be different in these regions as compared to the background region. Since a first-order quark hadron transition is very susceptible to small changes in temperature, we investigate the effect of the presence of such baryonic lumps on the dynamics of quark-hadron transition. We find that the phase transition is delayed in these lumps for significant overdensities. Consequently, we argue that baryon concentration in these regions grows by the end of the transition. We briefly discuss some models which may give rise to such high overdensities at the onset of the quark-hadron transition.Comment: 16 pages, no figures, minor changes, version to appear in Phys. Rev.

    A novel targeted/untargeted GC-Orbitrap metabolomics methodology applied to Candida albicans and Staphylococcus aureus biofilms

    Get PDF
    Introduction: Combined infections from Candida albicans and Staphylococcus aureus are a leading cause of death in the developed world. Evidence suggests that Candida enhances the virulence of Staphylococcus—hyphae penetrate through tissue barriers, while S. aureus tightly associates with the hyphae to obtain entry to the host organism. Indeed, in a biofilm state, C. albicans enhances the antimicrobial resistance characteristics of S. aureus. The association of these microorganisms is also associated with significantly increased morbidity and mortality. Due to this tight association we hypothesised that metabolic effects were also in evidence. Objectives: To explore the interaction, we used a novel GC-Orbitrap-based mass spectrometer, the Q Exactive GC, which combines the high peak capacity and chromatographic resolution of gas chromatography with the sub-ppm mass accuracy of an Orbitrap system. This allows the capability to leverage the widely available electron ionisation libraries for untargeted applications, along with expanding accurate mass libraries and targeted matches based around authentic standards. Methods: Optimised C. albicans and S. aureus mono- and co-cultured biofilms were analysed using the new instrument in addition to the fresh and spent bacterial growth media. Results: The targeted analysis experiment was based around 36 sugars and sugar phosphates, 22 amino acids and five organic acids. Untargeted analysis resulted in the detection of 465 features from fresh and spent medium and 405 from biofilm samples. Three significantly changing compounds that matched to high scoring library fragment patterns were chosen for validation. Conclusion: Evaluation of the results demonstrates that the Q Exactive GC is suitable for metabolomics analysis using a targeted/untargeted methodology. Many of the results were as expected: e.g. rapid consumption of glucose and fructose from the medium regardless of the cell type. Modulation of sugar-phosphate levels also suggest that the pentose phosphate pathway could be enhanced in the cells from co-cultured biofilms. Untargeted metabolomics results suggested significant production of cell-wall biosynthesis components and the consumption of non-proteinaceous amino-acids

    Resonant Inelastic X-Ray Scattering from Valence Excitations in Insulating Copper-Oxides

    Full text link
    We report resonant inelastic x-ray measurements of insulating La2_2CuO4_4 and Sr2_2CuO2_2Cl2_2 taken with the incident energy tuned near the Cu K absorption edge. We show that the spectra are well described in a shakeup picture in 3rd order perturbation theory which exhibits both incoming and outgoing resonances, and demonstrate how to extract a spectral function from the raw data. We conclude by showing {\bf q}-dependent measurements of the charge transfer gap.Comment: minor notational changes, discussion of anderson impurity model fixed, references added; accepted by PR
    • …
    corecore