17 research outputs found
Multiple PLDs Required for High Salinity and Water Deficit Tolerance in Plants
High salinity and drought have received much attention because they severely affect crop production worldwide. Analysis and comprehension of the plant's response to excessive salt and dehydration will aid in the development of stress-tolerant crop varieties. Signal transduction lies at the basis of the response to these stresses, and numerous signaling pathways have been implicated. Here, we provide further evidence for the involvement of phospholipase D (PLD) in the plant's response to high salinity and dehydration. A tomato (Lycopersicon esculentum) α-class PLD, LePLDα1, is transcriptionally up-regulated and activated in cell suspension cultures treated with salt. Gene silencing revealed that this PLD is indeed involved in the salt-induced phosphatidic acid production, but not exclusively. Genetically modified tomato plants with reduced LePLDα1 protein levels did not reveal altered salt tolerance. In Arabidopsis (Arabidopsis thaliana), both AtPLDα1 and AtPLDδ were found to be activated in response to salt stress. Moreover, pldα1 and pldδ single and double knock-out mutants exhibited enhanced sensitivity to high salinity stress in a plate assay. Furthermore, we show that both PLDs are activated upon dehydration and the knock-out mutants are hypersensitive to hyperosmotic stress, displaying strongly reduced growth
HCV Causes Chronic Endoplasmic Reticulum Stress Leading to Adaptation and Interference with the Unfolded Protein Response
BACKGROUND: The endoplasmic reticulum (ER) is the cellular site for protein folding. ER stress occurs when protein folding capacity is exceeded. This stress induces a cyto-protective signaling cascades termed the unfolded protein response (UPR) aimed at restoring homeostasis. While acute ER stress is lethal, chronic sub-lethal ER stress causes cells to adapt by attenuation of UPR activation. Hepatitis C virus (HCV), a major human pathogen, was shown to cause ER stress, however it is unclear whether HCV induces chronic ER stress, and if so whether adaptation mechanisms are initiated. We wanted to characterize the kinetics of HCV-induced ER stress during infection and assess adaptation mechanisms and their significance. METHODS AND FINDINGS: The HuH7.5.1 cellular system and HCV-transgenic (HCV-Tg) mice were used to characterize HCV-induced ER stress/UPR pathway activation and adaptation. HCV induced a wave of acute ER stress peaking 2-5 days post-infection, which rapidly subsided thereafter. UPR pathways were activated including IRE1 and EIF2α phosphorylation, ATF6 cleavage and XBP-1 splicing. Downstream target genes including GADD34, ERdj4, p58ipk, ATF3 and ATF4 were upregulated. CHOP, a UPR regulated protein was activated and translocated to the nucleus. Remarkably, UPR activity did not return to baseline but remained elevated for up to 14 days post infection suggesting that chronic ER stress is induced. At this time, cells adapted to ER stress and were less responsive to further drug-induced ER stress. Similar results were obtained in HCV-Tg mice. Suppression of HCV by Interferon-α 2a treatment, restored UPR responsiveness to ER stress tolerant cells. CONCLUSIONS: Our study shows, for the first time, that HCV induces adaptation to chronic ER stress which was reversed upon viral suppression. These finding represent a novel viral mechanism to manipulate cellular response pathways
Cathepsin L regulates metabolic networks controlling rapid cell growth and proliferation
Rapidly proliferating cells reshape their metabolism to satisfy their ever-lasting need for cellular building blocks. This phenomenon is exemplified in certain malignant conditions such as cancer but also during embryonic development when cells rely heavily on glycolytic metabolism to exploit its metabolic intermediates for biosynthetic processes. How cells reshape their metabolism is not fully understood. Here we report that loss of cathepsin L (Cts L) is associated with a fast proliferation rate and enhanced glycolytic metabolism that depend on lactate dehydrogenase A (LDHA) activity. Using mass spectrometry analysis of cells treated with a pan cathepsin inhibitor, we observed an increased abundance of proteins involved in central carbon metabolism. Further inspection of putative Cts L targets revealed an enrichment for glycolytic metabolism that was independently confirmed by metabolomic and biochemical analyses. Moreover, proteomic analysis of Cts L-knockout cells identified LDHA overexpression that was demonstrated to be a key metabolic junction in these cells. Lastly, we show that Cts L inhibition led to increased LDHA protein expression, suggesting a causal relationship between LDHA expression and function. In conclusion, we propose that Cts L regulates this metabolic circuit to keep cell division under control, suggesting the therapeutic potential of targeting this protein and its networks in cancer
Cathepsin L regulates metabolic networks controlling rapid cell growth and proliferation
Rapidly proliferating cells reshape their metabolism to satisfy their ever-lasting need for cellular building blocks. This phenomenon is exemplified in certain malignant conditions such as cancer but also during embryonic development when cells rely heavily on glycolytic metabolism to exploit its metabolic intermediates for biosynthetic processes. How cells reshape their metabolism is not fully understood. Here we report that loss of cathepsin L (Cts L) is associated with a fast proliferation rate and enhanced glycolytic metabolism that depend on lactate dehydrogenase A (LDHA) activity. Using mass spectrometry analysis of cells treated with a pan cathepsin inhibitor, we observed an increased abundance of proteins involved in central carbon metabolism. Further inspection of putative Cts L targets revealed an enrichment for glycolytic metabolism that was independently confirmed by metabolomic and biochemical analyses. Moreover, proteomic analysis of Cts L-knockout cells identified LDHA overexpression that was demonstrated to be a key metabolic junction in these cells. Lastly, we show that Cts L inhibition led to increased LDHA protein expression, suggesting a causal relationship between LDHA expression and function. In conclusion, we propose that Cts L regulates this metabolic circuit to keep cell division under control, suggesting the therapeutic potential of targeting this protein and its networks in cancer
Reassessing the role of phospholipase D in the Arabidopsis wounding response.
Plants respond to wounding by means of a multitude of reactions, with the purpose of stifling herbivore assault. Phospholipase D (PLD) has previously been implicated in the wounding response. Arabidopsis (Arabidopsis thaliana) AtPLDalpha1 has been proposed to be activated in intact cells, and the phosphatidic acid (PA) it produces to serve as a precursor for jasmonic acid (JA) synthesis and to be required for wounding-induced gene expression. Independently, PLD activity has been reported to have a bearing on wounding-induced MAPK activation. However, which PLD isoforms are activated, where this activity takes place (in the wounded or non-wounded cells) and what exactly the consequences are is a question that has not been comprehensively addressed. Here, we show that PLD activity during the wounding response is restricted to the ruptured cells using (32)P(i)-labelled phospholipid analyses of Arabidopsis pld knock-out mutants and PLD-silenced tomato cell-suspension cultures. pldalpha1 knock-out lines have reduced wounding-induced PA production, and the remainder is completely eliminated in a pldalpha1/delta double knock-out line. Surprisingly, wounding-induced protein kinase activation, AtLOX2 gene expression and JA biosynthesis were not affected in these knock-out lines. Moreover, larvae of the Cabbage White butterfly (Pieris rapae) grew equally well on wild-type and the pld knock-out mutants
Controlled expression of recombinant proteins in Physcomitrella patens by a conditional heat-shock promoter: a tool for plant research and biotechnology.
The ability to express tightly controlled amounts of endogenous and recombinant proteins in plant cells is an essential tool for research and biotechnology. Here, the inducibility of the soybean heat-shock Gmhsp17.3B promoter was addressed in the moss Physcomitrella patens, using beta-glucuronidase (GUS) and an F-actin marker (GFP-talin) as reporter proteins. In stably transformed moss lines, Gmhsp17.3B-driven GUS expression was extremely low at 25 degrees C. In contrast, a short non-damaging heat-treatment at 38 degrees C rapidly induced reporter expression over three orders of magnitude, enabling GUS accumulation and the labelling of F-actin cytoskeleton in all cell types and tissues. Induction levels were tightly proportional to the temperature and duration of the heat treatment, allowing fine-tuning of protein expression. Repeated heating/cooling cycles led to the massive GUS accumulation, up to 2.3% of the total soluble proteins. The anti-inflammatory drug acetyl salicylic acid (ASA) and the membrane-fluidiser benzyl alcohol (BA) also induced GUS expression at 25 degrees C, allowing the production of recombinant proteins without heat-treatment. The Gmhsp17.3B promoter thus provides a reliable versatile conditional promoter for the controlled expression of recombinant proteins in the moss P. patens