4,174 research outputs found
Geometrical estimators as a test of Gaussianity in the CMB
We investigate the power of geometrical estimators on detecting
non-Gaussianity in the cosmic microwave background. In particular the number,
eccentricity and Gaussian curvature of excursion sets above (and below) a
threshold are studied. We compare their different performance when applied to
non-Gaussian simulated maps of small patches of the sky, which take into
account the angular resolution and instrumental noise of the Planck satellite.
These non-Gaussian simulations are obtained as perturbations of a Gaussian
field in two different ways which introduce a small level of skewness or
kurtosis in the distribution. A comparison with a classical estimator, the
genus, is also shown. We find that the Gaussian curvature is the best of our
estimators in all the considered cases. Therefore we propose the use of this
quantity as a particularly useful test to look for non-Gaussianity in the CMB.Comment: 9 pages, 6 postscript figures, submitted to MNRA
Quasar-galaxy associations revisited
Gravitational lensing predicts an enhancement of the density of bright,
distant QSOs around foreground galaxies. We measure this QSO-galaxy correlation
w_qg for two complete samples of radio-loud quasars, the southern 1Jy and
Half-Jansky samples. The existence of a positive correlation between z~1
quasars and z~0.15 galaxies is confirmed at a p=99.0% significance level
(>99.9%) if previous measurements on the northern hemisphere are included). A
comparison with the results obtained for incomplete quasar catalogs (e.g. the
Veron-Cetty and Veron compilation) suggests the existence of an `identification
bias', which spuriously increases the estimated amplitude of the quasar-galaxy
correlation for incomplete samples. This effect may explain many of the
surprisingly strong quasar-galaxy associations found in the literature.
Nevertheless, the value of w_qg that we measure in our complete catalogs is
still considerably higher than the predictions from weak lensing. We consider
two effects which could help to explain this discrepancy: galactic dust
extinction and strong lensing.Comment: 9 pages, 6 figures, MNRAS accepte
Genus and spot density in the COBE DMR first year anisotropy maps
A statistical analysis of texture on the {\it COBE}-DMR first year sky maps
based on the genus and spot number is presented. A generalized
statistic is defined in terms of ``observable'' quantities: the genus and spot
density that would be measured by different cosmic observers. This strategy
together with the use of Monte Carlo simulations of the temperature
fluctuations, including all the relevant experimental parameters, represent the
main difference with previous analyses. Based on the genus analysis we find a
strong anticorrelation between the quadrupole amplitude and the
spectral index of the density fluctuation power spectrum at recombination
of the form K for fixed
, consistent with previous works. The result obtained based on the spot
density is consistent with this relation. In addition to the
previous results we have determined, using Monte Carlo simulations, the minimum
uncertainty due to cosmic variance for the determination of the spectral index
with the genus analysis. This uncertainty is .Comment: 5 pages, uuencode file containing text and 1 figure. MNRAS in press
Constraining our Universe with X-ray & Optical Cluster Data
We have used recent X-ray and optical data in order to impose some
constraints on the cosmology and cluster scaling relations. Generically two
kind of hypotheses define our model. First we consider that the cluster
population is well described by the standard Press-Schechter (PS) formalism,
and second, these clusters are supposed to follow scaling relations with mass:
Temperature-Mass (T-M) and X-ray Luminosity-Mass (L_x - M). As a difference
with many other authors we do not assume specific scaling relations to model
cluster properties such as the usual virial relation or one observational
determination of the relation. Instead we consider general free
parameter scaling relations. With the previous model (PS plus scalings) we fit
our free parameters to several X-ray and optical data with the advantage over
many other works that we consider all the data sets at the same time. This
prevents us from being inconsistent with some of the available observations.
Among other interesting conclusions, we find that only low-density universes
are compatible with all the data considered and that the degeneracy between
and is broken. Also we obtain interesting limits on the
parameters characterizing the scaling relations.Comment: 11 pages, 7 figures. MNRAS accepted versio
Wavelets Applied to CMB Maps: a Multiresolution Analysis for Denoising
Analysis and denoising of Cosmic Microwave Background (CMB) maps are
performed using wavelet multiresolution techniques. The method is tested on
maps with resolution resembling the
experimental one expected for future high resolution space observations.
Semianalytic formulae of the variance of wavelet coefficients are given for the
Haar and Mexican Hat wavelet bases. Results are presented for the standard Cold
Dark Matter (CDM) model. Denoising of simulated maps is carried out by removal
of wavelet coefficients dominated by instrumental noise. CMB maps with a
signal-to-noise, , are denoised with an error improvement factor
between 3 and 5. Moreover we have also tested how well the CMB temperature
power spectrum is recovered after denoising. We are able to reconstruct the
's up to with errors always below in cases with
.Comment: latex file 9 pages + 5 postscript figures + 1 gif figure (figure 6),
to be published in MNRA
Filtering techniques for the detection of Sunyaev-Zel'dovich clusters in multifrequency CMB maps
The problem of detecting Sunyaev-Zel'dovich (SZ) clusters in multifrequency
CMB observations is investigated using a number of filtering techniques. A
multifilter approach is introduced, which optimizes the detection of SZ
clusters on microwave maps. An alternative method is also investigated, in
which maps at different frequencies are combined in an optimal manner so that
existing filtering techniques can be applied to the single combined map. The SZ
profiles are approximated by the circularly-symmetric template , with and , where the core radius and the overall amplitude of the effect
are not fixed a priori, but are determined from the data. The background
emission is modelled by a homogeneous and isotropic random field, characterized
by a cross-power spectrum with . The
filtering methods are illustrated by application to simulated Planck
observations of a patch of sky in 10 frequency
channels. Our simulations suggest that the Planck instrument should detect
SZ clusters in 2/3 of the sky. Moreover, we find the catalogue
to be complete for fluxes mJy at 300 GHz.Comment: 12 pages, 7 figures; Corrected figures. Submitted to MNRA
- …