2,278 research outputs found
Random matrix study for a three-terminal chaotic device
We perform a study based on a random-matrix theory simulation for a
three-terminal device, consisting of chaotic cavities on each terminal. We
analyze the voltage drop along one wire with two chaotic mesoscopic cavities,
connected by a perfect conductor, or waveguide, with one open mode. This is
done by means of a probe, which also consists of a chaotic cavity that measure
the voltage in different configurations. Our results show significant
differences with respect to the disordered case, previously considered in the
literature.Comment: Proccedings of the V Leopoldo Garcia-Colin Mexican Meeting on
Mathematical and Experimental Physic
Space-contained conflict revision, for geographic information
Using qualitative reasoning with geographic information, contrarily, for
instance, with robotics, looks not only fastidious (i.e.: encoding knowledge
Propositional Logics PL), but appears to be computational complex, and not
tractable at all, most of the time. However, knowledge fusion or revision, is a
common operation performed when users merge several different data sets in a
unique decision making process, without much support. Introducing logics would
be a great improvement, and we propose in this paper, means for deciding -a
priori- if one application can benefit from a complete revision, under only the
assumption of a conjecture that we name the "containment conjecture", which
limits the size of the minimal conflicts to revise. We demonstrate that this
conjecture brings us the interesting computational property of performing a
not-provable but global, revision, made of many local revisions, at a tractable
size. We illustrate this approach on an application.Comment: 14 page
Metallic properties of magnesium point contacts
We present an experimental and theoretical study of the conductance and
stability of Mg atomic-sized contacts. Using Mechanically Controllable Break
Junctions (MCBJ), we have observed that the room temperature conductance
histograms exhibit a series of peaks, which suggests the existence of a shell
effect. Its periodicity, however, cannot be simply explained in terms of either
an atomic or electronic shell effect. We have also found that at room
temperature, contacts of the diameter of a single atom are absent. A possible
interpretation could be the occurrence of a metal-to-insulator transition as
the contact radius is reduced, in analogy with what it is known in the context
of Mg clusters. However, our first principle calculations show that while an
infinite linear chain can be insulating, Mg wires with larger atomic
coordinations, as in realistic atomic contacts, are alwaysmetallic. Finally, at
liquid helium temperature our measurements show that the conductance histogram
is dominated by a pronounced peak at the quantum of conductance. This is in
good agreement with our calculations based on a tight-binding model that
indicate that the conductance of a Mg one-atom contact is dominated by a single
fully open conduction channel.Comment: 14 pages, 5 figure
Eta-mesic nuclei
In this contribution we report on theoretical studies of nuclear
quasi-bound states in few- and many-body systems performed recently by the
Jerusalem-Prague Collaboration [1-5]. Underlying energy-dependent
interactions are derived from coupled-channel models that incorporate the
resonance. The role of self-consistent treatment of the strong
energy dependence of subthreshold amplitudes is discussed. Quite large
downward energy shift together with rapid decrease of the amplitudes
below threshold result in relatively small binding energies and widths of the
calculated nuclear bound states. We argue that the subthreshold behavior
of scattering amplitudes is crucial to conclude whether nuclear
states exist, in which nuclei the meson could be bound and if the
corresponding widths are small enough to allow detection of these
nuclear states in experiment.Comment: 7 pages, 5 figures; presented at HADRON2017, Sept. 25-29, 2017,
Salamanca (Spain); prepared for Proceedings of Scienc
- âŠ