2,278 research outputs found

    Random matrix study for a three-terminal chaotic device

    Full text link
    We perform a study based on a random-matrix theory simulation for a three-terminal device, consisting of chaotic cavities on each terminal. We analyze the voltage drop along one wire with two chaotic mesoscopic cavities, connected by a perfect conductor, or waveguide, with one open mode. This is done by means of a probe, which also consists of a chaotic cavity that measure the voltage in different configurations. Our results show significant differences with respect to the disordered case, previously considered in the literature.Comment: Proccedings of the V Leopoldo Garcia-Colin Mexican Meeting on Mathematical and Experimental Physic

    Donald E. Chipman, Spanish Texas, 1519-1821

    Get PDF

    Space-contained conflict revision, for geographic information

    Get PDF
    Using qualitative reasoning with geographic information, contrarily, for instance, with robotics, looks not only fastidious (i.e.: encoding knowledge Propositional Logics PL), but appears to be computational complex, and not tractable at all, most of the time. However, knowledge fusion or revision, is a common operation performed when users merge several different data sets in a unique decision making process, without much support. Introducing logics would be a great improvement, and we propose in this paper, means for deciding -a priori- if one application can benefit from a complete revision, under only the assumption of a conjecture that we name the "containment conjecture", which limits the size of the minimal conflicts to revise. We demonstrate that this conjecture brings us the interesting computational property of performing a not-provable but global, revision, made of many local revisions, at a tractable size. We illustrate this approach on an application.Comment: 14 page

    Eine Kennzeichnung semi-perfekter Moduln

    Get PDF

    Metallic properties of magnesium point contacts

    Get PDF
    We present an experimental and theoretical study of the conductance and stability of Mg atomic-sized contacts. Using Mechanically Controllable Break Junctions (MCBJ), we have observed that the room temperature conductance histograms exhibit a series of peaks, which suggests the existence of a shell effect. Its periodicity, however, cannot be simply explained in terms of either an atomic or electronic shell effect. We have also found that at room temperature, contacts of the diameter of a single atom are absent. A possible interpretation could be the occurrence of a metal-to-insulator transition as the contact radius is reduced, in analogy with what it is known in the context of Mg clusters. However, our first principle calculations show that while an infinite linear chain can be insulating, Mg wires with larger atomic coordinations, as in realistic atomic contacts, are alwaysmetallic. Finally, at liquid helium temperature our measurements show that the conductance histogram is dominated by a pronounced peak at the quantum of conductance. This is in good agreement with our calculations based on a tight-binding model that indicate that the conductance of a Mg one-atom contact is dominated by a single fully open conduction channel.Comment: 14 pages, 5 figure

    Eta-mesic nuclei

    Full text link
    In this contribution we report on theoretical studies of η\eta nuclear quasi-bound states in few- and many-body systems performed recently by the Jerusalem-Prague Collaboration [1-5]. Underlying energy-dependent ηN\eta N interactions are derived from coupled-channel models that incorporate the N∗(1535)N^*(1535) resonance. The role of self-consistent treatment of the strong energy dependence of subthreshold ηN\eta N amplitudes is discussed. Quite large downward energy shift together with rapid decrease of the ηN\eta N amplitudes below threshold result in relatively small binding energies and widths of the calculated η\eta nuclear bound states. We argue that the subthreshold behavior of ηN\eta N scattering amplitudes is crucial to conclude whether η\eta nuclear states exist, in which nuclei the η\eta meson could be bound and if the corresponding widths are small enough to allow detection of these η\eta nuclear states in experiment.Comment: 7 pages, 5 figures; presented at HADRON2017, Sept. 25-29, 2017, Salamanca (Spain); prepared for Proceedings of Scienc
    • 

    corecore