26 research outputs found

    Nonlinear changes in the activity of the oxygen-dependent demethylase system in Rhodococcus erythropolis cells in the presence of low and very low doses of formaldehyde

    Get PDF
    The effect of exogenous, highly diluted formaldehyde on the rate of demethylation/re-methylation of veratric acid by the bacteria Rhodococcus erythropolis was studied using electrophoretic and microscopic techniques. The activity of 4-O-demethylase, responsible for accumulation of vanillic acid, and the levels of veratric and vanillic acids were determined using capillary electrophoresis. Formaldehyde was serially diluted at 1:100 ratios, and the total number of iterations was 20. After incubation of the successive dilutions of formaldehyde with the bacteria, demethylase activity oscillated in a sinusoidal manner. It was established using capillary electrophoresis that methylation of vanillic acid to veratric acid occurred at a double rate, as shown by the doubled fluctuation in the concentration of veratrate. There were also changes in the NADH oxidase activity, which is associated with methylation processes. Microscopic observations revealed the presence of numerous enlarged vacuoles in bacterial cells during the accumulation of large amounts of vanillic acid, and their disappearance together with a decrease in 4-O-demethylase activity. The presented results give evidence for the ability of living cells to detect the presence of submolecular concentrations of biological effectors in their environment and provide a basis for a scientific explanation of the law of hormesis and the therapeutic effect of homeopathic dilutions

    Influence of very low doses of mediators on fungal laccase activity - nonlinearity beyond imagination

    Get PDF
    Laccase, an enzyme responsible for aerobic transformations of natural phenolics, in industrial applications requires the presence of low-molecular substances known as mediators, which accelerate oxidation processes. However, the use of mediators is limited by their toxicity and the high costs of exploitation. The activation of extracellular laccase in growing fungal culture with highly diluted mediators, ABTS and HBT is described. Two high laccase-producing fungal strains, Trametes versicolor and Cerrena unicolor, were used in this study as a source of enzyme. Selected dilutions of the mediators significantly increased the activity of extracellular laccase during 14 days of cultivation what was distinctly visible in PAGE technique and in colorimetric tests. The same mediator dilutions increased demethylation properties of laccase, which was demonstrated during incubation of enzyme with veratric acid. It was established that the activation effect was assigned to specific dilutions of mediators. Our dose-response dilution process smoothly passes into the range of action of homeopathic dilutions and is of interest for homeopaths

    A model for homeopathic remedy effects: low dose nanoparticles, allostatic cross-adaptation, and time-dependent sensitization in a complex adaptive system

    Get PDF
    BACKGROUND: This paper proposes a novel model for homeopathic remedy action on living systems. Research indicates that homeopathic remedies (a) contain measurable source and silica nanoparticles heterogeneously dispersed in colloidal solution; (b) act by modulating biological function of the allostatic stress response network (c) evoke biphasic actions on living systems via organism-dependent adaptive and endogenously amplified effects; (d) improve systemic resilience. DISCUSSION: The proposed active components of homeopathic remedies are nanoparticles of source substance in water-based colloidal solution, not bulk-form drugs. Nanoparticles have unique biological and physico-chemical properties, including increased catalytic reactivity, protein and DNA adsorption, bioavailability, dose-sparing, electromagnetic, and quantum effects different from bulk-form materials. Trituration and/or liquid succussions during classical remedy preparation create “top-down” nanostructures. Plants can biosynthesize remedy-templated silica nanostructures. Nanoparticles stimulate hormesis, a beneficial low-dose adaptive response. Homeopathic remedies prescribed in low doses spaced intermittently over time act as biological signals that stimulate the organism’s allostatic biological stress response network, evoking nonlinear modulatory, self-organizing change. Potential mechanisms include time-dependent sensitization (TDS), a type of adaptive plasticity/metaplasticity involving progressive amplification of host responses, which reverse direction and oscillate at physiological limits. To mobilize hormesis and TDS, the remedy must be appraised as a salient, but low level, novel threat, stressor, or homeostatic disruption for the whole organism. Silica nanoparticles adsorb remedy source and amplify effects. Properly-timed remedy dosing elicits disease-primed compensatory reversal in direction of maladaptive dynamics of the allostatic network, thus promoting resilience and recovery from disease. SUMMARY: Homeopathic remedies are proposed as source nanoparticles that mobilize hormesis and time-dependent sensitization via non-pharmacological effects on specific biological adaptive and amplification mechanisms. The nanoparticle nature of remedies would distinguish them from conventional bulk drugs in structure, morphology, and functional properties. Outcomes would depend upon the ability of the organism to respond to the remedy as a novel stressor or heterotypic biological threat, initiating reversals of cumulative, cross-adapted biological maladaptations underlying disease in the allostatic stress response network. Systemic resilience would improve. This model provides a foundation for theory-driven research on the role of nanomaterials in living systems, mechanisms of homeopathic remedy actions and translational uses in nanomedicine

    Epoxidation of canola oil with the use of acidic ion exchange resins

    No full text
    Obecnie dąży się do opracowania technologii umożliwiających otrzymywanie epoksydowanych olejów roślinnych o jak najwyższej zawartości tlenu oksiranowego. Obserwuje się wzrost zainteresowania nowymi metodami epoksydowania olejów roślinnych, w tym epoksydowaniem nadkwasami w obecności kwaśnych żywic jonowymiennych jako katalizatorów. Brak informacji literaturowych porównujących wpływ rodzaju żywicy jonowymiennej na epoksydację oleju rzepakowego skłonił autorów niniejszego artykułu do badań nad tym zagadnieniem. Celem badań było porównanie wyników epoksydacji oleju rzepakowego o liczbie jodowej 0,405 mol I2/100 g oleju za pomocą nadkwasu octowego otrzymywanego in situ w reakcji 30% roztworu nadtlenku wodoru i lodowatego kwasu octowego, w obecności kwaśnych żywic jonowymiennych: Amberlite IR-120, Amberlyst 15 oraz Dowex 50WX2. Użyte żywice są kopolimerami styrenu i diwinylobenzenu, różnią się ilością środka sieciującego oraz postacią. Przedstawiono wyniki epoksydacji oraz wykazano, że właściwości te mają wpływ na prze- bieg procesów. Najwyższą wydajność epoksydowanego oleju rzepakowego – 71,6% osiągnięto stosując Dowex 50WX2, czyli żelową żywicę o najmniejszej zawartości środka sieciującego.Nowadays, it is aimed to develop the technologies enabling the production of epoxidized vegetable oils with the content of oxirane oxygen as high as possible. There is a growing interest in new methods of vegetable oils epoxidation, including epoxidation by peracids in the presence of acidic ion exchange resins as catalysts. Lack of information in the literature about the effects of the type of ion exchange resin for the canola oil epoxidation has prompted the authors of this study to research on this topic. The aim of the study was to compare the results of canola oil (with iodine value of 0.405 mol I2/100 g oil) epoxidation using a peroxyacid generated in situ by the reaction of 30 wt% hydrogen peroxide and glacial acetic acid in the presence of acidic ion exchange resins: Amberlite IR-120, Amberlyst 15 and Dowex 50WX2. Chemically, the resins are sulphonated copolymers of styrene and divinylbenzene, differing in the content of the crosslinking agent and form. The study shows that these properties have influence on the course of processes. The best yield of epoxidized canola oil – 71.6% was obtained using Dowex 50WX2 (resin of the lowest content of divinylbenzene – 2% and in form of gel)

    Technological aspects of vegetable oils epoxidation in the presence of ion exchange resins: a review

    No full text
    A review paper of the technology basics of vegetable oils epoxidation by means of peracetic or performic acid in the presence of acidic ion exchange resins has been presented. The influence of the following parameters: temperature, molar ratio of acetic acid and hydrogen peroxide to ethylenic unsaturation, catalyst loading, stirring intensity and the reaction time on a conversion of ethylenic unsaturation, the relative percentage conversion to oxirane and the iodine number was discussed. Optimal technological parameters, mechanism of epoxidation by carboxylic peracids and the possibilities of catalyst recycling have been also discussed. This review paper shows the application of epoxidized oils

    Development of a laccase-modified electrode for amperometric detection of mono- and diphenols. The influence of enzyme storage method

    No full text
    Results are reported for biosensors based on two different preparations of the same enzyme, laccase from Cerrena unicolor, one lyophilized and one stored frozen at - 18degreesC, for monitoring phenolic compounds. The enzyme was adsorbed on graphite electrodes and these were used in a flow through wall jet cell connected to a flow injection set-up. The electrodes were used at - 50 mV vs. AgAgCl. The effect of PH, flow rate of the carrier buffer was investigated as well as the operational and storage stability. Biosensors based on the frozen enzyme preparation were shown to be superior for biosensor construction

    Effect of Low and Very Low Doses of Simple Phenolics on Plant Peroxidase Activity

    No full text
    Changes in the activity of horseradish peroxidase resulting from an addition of ethanol water dilutions of 19 phenolic compounds were observed. For each compound, the enzyme activity was plotted against the degree of dilution expressed as n = –log100 (mol/L) in the range 0 ≤ n ≥ 20. All the curves showed sinusoidal activity, more or less regular, with two to four peaks on average. Each analyzed compound had a characteristic sinusoidal shape, which was constant for samples of peroxidase from various commercial firms. This was clearly visible after function fitting to experimental results based on the Marquadt–Levenberg algorithm using the least-squares method. Among the 19 phenolics, the highest amplitudes were observed for phenol and iso- and vanillate acids and aldehydes. The specific character of each of the analyzed curves offers a possibility of choosing proper dilutions of phenolic compound for activating or inhibiting of peroxidase activity
    corecore