647 research outputs found

    Orbital Parameters for the Black Hole Binary XTE J1650-500

    Full text link
    (Shortened) We present R-band photometry of the X-ray transient and candidate black hole binary XTE J1650-500 obtained between 2003 May and August with the 6.5m Clay Telescope. A timing analysis of these data reveals a photometric period of 0.3205 +/- 0.0007 days (i.e. 7.63 hr) with a possible alias at 0.3785 days (9.12 hr). Our photometry completely rules out the previously published spectroscopic period of 0.212 days (5.09 hr). Consequently, we reanalyzed the 15 archival ESO/VLT spectra (obtained 2002 June by Sanchez-Fernandez et al.) that were the basis of the previously published spectroscopic period. We used a ``restframe search'' technique that is well suited for cases when the signal-to-noise ratio of individual spectra is low. The results confirmed the photometric period of 0.3205 days, and rule out the alias period near 0.38 days. The best value for the velocity semiamplitude of the companion star is K_2 = 435 +/- 30 km/sec, and the corresponding optical mass function is f(M) = 2.73 +/- 0.56 solar masses. The amplitude of the phased R-band light curve is 0.2 magnitudes, which gives a lower limit to the inclination of 50 +/- 3 degrees in the limiting case of no contribution to the R-band light curve from the accretion disk. If the mass ratio of XTE J1650-500 is similar to the mass ratios of other black hole binaries like A0620-00 or GRS 1124-683 (e.g. Q >~ 10), then our lower limit to the inclination gives an upper limit to the mass of the black hole in XTE J1650-500 of M_1 <~ 7.3 solar masses. However, the mass can be considerably lower if the R-band flux is dominated by the accretion disk. For example, if the accretion disk does contribute 80% of the flux, as our preliminary results suggest, then the black hole mass would be only about 4 solar masses.Comment: Accepted to ApJ. 15 pages, 5 figures (two of degraded quality). Revised after referee's Comments, conclusions are unchange

    A Parallax Distance to the Microquasar GRS 1915+105 and a Revised Estimate of its Black Hole Mass

    Full text link
    Using the Very Long Baseline Array, we have measured a trigonometric parallax for the micro quasar GRS 1915+105, which contains a black hole and a K-giant companion. This yields a direct distance estimate of 8.6 (+2.0,-1.6) kpc and a revised estimate for the mass of the black hole of 12.4 (+2.0,-1.8) Msun. GRS 1915+105 is at about the same distance as some HII regions and water masers associated with high-mass star formation in the Sagittarius spiral arm of the Galaxy. The absolute proper motion of GRS 1915+105 is -3.19 +/- 0.03 mas/y and -6.24 +/- 0.05 mas/y toward the east and north, respectively, which corresponds to a modest peculiar speed of 22 +/-24 km/s at the parallax distance, suggesting that the binary did not receive a large velocity kick when the black hole formed. On one observational epoch, GRS 1915+105 displayed superluminal motion along the direction of its approaching jet. Considering previous observations of jet motions, the jet in GRS 1915+105 can be modeled with a jet inclination to the line of sight of 60 +/- 5 deg and a variable flow speed between 0.65c and 0.81c, which possibly indicates deceleration of the jet at distances from the black hole >2000 AU. Finally, using our measurements of distance and estimates of black hole mass and inclination, we provisionally confirm our earlier result that the black hole is spinning very rapidly.Comment: 20 pages; 2 tables; 6 figure

    Complete RXTE Spectral Observations of the Black Hole X-ray Nova XTE J1550-564

    Get PDF
    We report on the X-ray spectral behavior of the exceptionally bright X-ray nova XTE J1550-564 during its 1998-99 outburst. Our study is based on 209 pointed observations using the PCA and HEXTE instruments onboard the Rossi X-ray Timing Explorer spanning 250 days and covering the entire double-peaked eruption that occurred from 1998 September until 1999 May. The spectra are fit to a model including multicolor blackbody disk and power-law components. The source is observed in the very high and high/soft outburst states of black hole X-ray novae. During the very high state, when the power-law component dominated the spectrum, the inner disk radius is observed to vary by more than an order of magnitude; the radius decreased by a factor of 16 in one day during a 6.8 Crab flare. If the larger of these observed radii is taken to be the last stable orbit, then the smaller observed radius would imply that the inner edge of the disk is inside the event horizon! However, we conclude that the apparent variations of the inner disk radius observed during periods of increased power-law emission are probably caused by the failure of the multicolor disk/power-law model; the actual physical radius of the inner disk may remain fairly constant. This interpretation is supported by the fact that the observed inner disk radius remains approximately constant over 120 days in the high state, when the power-law component is weak, even though the disk flux and total flux vary by an order of magnitude. The mass of the black hole inferred by equating the approximately constant inner disk radius observed in the high/soft state with the last stable orbit for a Schwarzschild black hole is M_BH = 7.4 M_sun (D/6 kpc) (cos i)^{-1/2}.Comment: Submitted to ApJ, 20 pages including 6 figures + 4 large table

    Modeling the Optical-X-ray Accretion Lag in LMC X-3: Insights Into Black-Hole Accretion Physics

    Full text link
    The X-ray persistence and characteristically soft spectrum of the black hole X-ray binary LMC X-3 make this source a touchstone for penetrating studies of accretion physics. We analyze a rich, 10-year collection of optical/infrared (OIR) time-series data in conjunction with all available contemporaneous X-ray data collected by the ASM and PCA detectors aboard the Rossi X-ray Timing Explorer. A cross-correlation analysis reveals an X-ray lag of ~2 weeks. Motivated by this result, we develop a model that reproduces the complex OIR light curves of LMC X-3. The model is comprised of three components of emission: stellar light; accretion luminosity from the outer disk inferred from the time-lagged X-ray emission; and light from the X-ray-heated star and outer disk. Using the model, we filter a strong noise component out of the ellipsoidal light curves and derive an improved orbital period for the system. Concerning accretion physics, we find that the local viscous timescale in the disk increases with the local mass accretion rate; this in turn implies that the viscosity parameter alpha decreases with increasing luminosity. Finally, we find that X-ray heating is a strong function of X-ray luminosity below ~50% of the Eddington limit, while above this limit X-ray heating is heavily suppressed. We ascribe this behavior to the strong dependence of the flaring in the disk upon X-ray luminosity, concluding that for luminosities above ~50% of Eddington, the star lies fully in the shadow of the disk.Comment: Accepted in ApJ (12 pages long in emulateapj format

    Use of Gas Electron Multiplier (GEM) Detectors for an Advanced X-ray Monitor

    Get PDF
    We describe a concept for a NASA SMEX Mission in which Gas Electron Multiplier (GEM) detectors, developed at CERN, are adapted for use in X-ray astronomy. These detectors can be used to obtain moderately large detector area and two-dimensional photon positions with sub mm accuracy in the range of 1.5 to 15 keV. We describe an application of GEMs with xenon gas, coded mask cameras, and simple circuits for measuring event positions and for anticoincidence rejection of particle events. The cameras are arranged to cover most of the celestial sphere, providing high sensitivity and throughput for a wide variety of cosmic explosions. At longer timescales, persistent X-ray sources would be monitored with unprecedented levels of coverage. The sensitivity to faint X-ray sources on a one-day timescale would be improved by a factor of 6 over the capability of the RXTE All Sky Monitor.Comment: 10 pages, 5 figs., in X-Ray and Gamma Ray Instrumentation for Astronomy XI, SPIE conference, San Diego, Aug. 200

    X-ray Properties of Black-Hole Binaries

    Get PDF
    We review the properties and behavior X-ray binaries that contain an accreting black hole. The larger majority of such systems are X-ray transients, and many of them were observed in daily pointings with RXTE throughout the course of their outbursts. The complex evolution of these sources is described in terms of common behavior patterns illustrated with comprehensive overview diagrams for six selected systems. Central to this comparison are three X-ray states of accretion, which are reviewed and defined quantitatively. Each state yields phenomena that arise in strong gravitational fields. We sketch a scenario for the potential impact of black hole observations on physics and discuss a current frontier topic: the measurement of black hole spin.Comment: 39 pages, 12 figures, ARAA, vol. 44, in pres

    The X-ray Outburst of H1743-322: High-Frequency QPOs with a 3:2 Frequency Ratio

    Full text link
    We observed the 2003 X-ray outburst of H1743-322 in a series of 130 pointed observation with RXTE. We searched individual observations for high-frequency QPOs (HFQPOs) and found only weak or marginal detections near 240 and 160 Hz. We next grouped the observations in several different ways and computed the average power-density spectra (PDS) in a search for further evidence of HFQPOs. This effort yielded two significant results for those observations defined by the presence of low-frequency QPOs (0.1-20 Hz) and an absence of ``band-limited'' power continua: (1) The 9 time intervals with the highest 7-35 keV count rates yielded an average PDS with a QPO at 166±5166 \pm 5 Hz. (4.1σ4.1 \sigma; 3--35 keV); and (2) a second group with lower 7-35 keV count rates (26 intervals) produced an average PDS with a QPO at 242±3242 \pm 3 Hz (6.0σ6.0 \sigma; 7--35 keV). The ratio of these two frequencies is 1.46±0.051.46 \pm 0.05. This finding is consistent with results obtained for three other black hole systems that exhibit commensurate HFQPOs in a 3:2 ratio. Furthermore, the occurrence of H1743-322's slower HFQPO at times of higher X-ray luminosity closely resembles the behavior of XTE J1550-564 and GRO J1655-40. We discuss our results in terms of a resonance model that invokes frequencies set by general relativity for orbital motions near a black-hole event horizon.Comment: 12 pages, 3 figures, submitted to Ap
    corecore