155 research outputs found

    Hot-spot formation in stacks of intrinsic Josephson junctions in Bi2Sr2CaCu2O8

    Full text link
    We have studied experimentally and numerically temperature profiles and the formation of hot spots in intrinsic Josephson junction stacks in Bi2Sr2CaCu2O8 (BSCCO). The superconducting stacks are biased in a state where all junctions are resistive. The formation of hot spots in this system is shown to arise mainly from the strongly negative temperature coefficient of the c-axis resistivity of BSCCO at low temperatures. This leads to situations where the maximum temperature in the hot spot can be below or above the superconducting transition temperature Tc. The numerical simulations are in good agreement with the experimental observations

    Flow-induced delayed Freedericksz transition

    Get PDF
    We demonstrate that a compact manometer experiment allows direct observation of a delay to the classical electric-field-induced Freedericksz transition produced by flow in a highly dispersive nematic liquid crystal layer. The Ericksen-Leslie equations are used to show that a flow aligning torque generated in the nematic layer under Poiseuille flow competes with the orthogonal electric-field reorientation torque. This model fully reproduces the experimental results using only self-consistently determined viscosity values, and predicts a more generally applicable expression for the dependence of the delay Ec∝√ζ/Δχe on the shear rate ζ and on the electric susceptibility anisotropy Δχe

    Increased Levels of Inflammatory Cytokines and Endothelin-1 in Alveolar Macrophages from Patients with Chronic Heart Failure

    Get PDF
    BACKGROUND: Pathophysiological interactions between heart and lungs in heart failure (HF) are well recognized. We investigated whether expression of different factors known to be increased in the myocardium and/or the circulation in HF is also increased in alveolar macrophages in HF. METHODOLOGY/PRINCIPAL FINDINGS: Lung function, hemodynamic parameters, gene expression in alveolar macrophages, and plasma levels in the pulmonary and femoral arteries of HF patients (n = 20) were compared to control subjects (n = 16). Our principal findings were: (1) Lung function was significantly lower in HF patients compared to controls (P<0.05). (2) mRNA levels of ET-1, tumor necrosis factor (TNF)-α and interleukin-6 (IL-6) were increased in alveolar macrophages from HF patients. (3) Plasma levels of ET-1, TNFα, IL-6 and MCP-1 were significantly increased in HF patients, whereas our data indicate a net pulmonary release of MCP-1 into the circulation in HF. CONCLUSIONS/SIGNIFICANCE: Several important cytokines and ET-1 are induced in alveolar macrophages in human HF. Further studies should clarify whether increased synthesis of these factors affects pulmonary remodeling and, directly or indirectly, adversely affects the failing myocardium

    A Novel Fluorescent Imaging Agent for Diffuse Optical Tomography of the Breast: First Clinical Experience in Patients

    Get PDF
    Purpose: This is the first clinical evaluation of a novel fluorescent imaging agent (Omocianine) for breast cancer detection with diffuse optical tomography (DOT). Procedures: Eleven women suspected of breast cancer were imaged with DOT at multiple time points (up to 24 h) after receiving an intravenous injection of Omocianine (doses 0.01 to 0.1 mg/kg bodyweight). Breast MRI was obtained for comparison. Results: Histopathology showed invasive cancer in ten patients and fibroadenoma in one patient. With the lowest dose of Omocianine, two of three lesions were detected; with the second dose, three of three lesions were detected; with the two highest doses, none of five lesions were detected. Lesion location on DOT showed excellent agreement with MRI. Optimal lesion-tobackground signals were obtained after 8 h. No adverse events occurred. Conclusions: Lowest doses of Omocianine performed best in lesion detection; DOT using a lowdose fluorescent agent is feasible and safe for breast cancer visualization in patients

    Prescribing indicators at primary health care centers within the WHO African region: a systematic analysis (1995-2015)

    Get PDF
    Abstract Background Rational medicine use is essential to optimize quality of healthcare delivery and resource utilization. We aim to conduct a systematic review of changes in prescribing patterns in the WHO African region and comparison with WHO indicators in two time periods 1995–2005 and 2006–2015. Methods Systematic searches were conducted in PubMed, Scopus, Web of science, Africa-Wide Nipad, Africa Journals Online (AJOL), Google scholar and International Network for Rational Use of Drugs (INRUD) Bibliography databases to identify primary studies reporting prescribing indicators at primary healthcare centres (PHCs) in Africa. This was supplemented by a manual search of retrieved references. We assessed the quality of studies using a 14-point scoring system modified from the Downs and Black checklist with inclusions of recommendations in the WHO guidelines. Results Forty-three studies conducted in 11 African countries were included in the overall analysis. These studies presented prescribing indicators based on a total 141,323 patient encounters across 572 primary care facilities. The results of prescribing indicators were determined as follows; average number of medicines prescribed per patient encounter = 3.1 (IQR 2.3–4.8), percentage of medicines prescribed by generic name =68.0 % (IQR 55.4–80.3), Percentage of encounters with antibiotic prescribed =46.8 % (IQR 33.7–62.8), percentage of encounters with injection prescribed =25.0 % (IQR 18.7–39.5) and the percentage of medicines prescribed from essential medicines list =88.0 % (IQR 76.3–94.1). Prescribing indicators were generally worse in private compared with public facilities. Analysis of prescribing across two time points 1995–2005 and 2006–2015 showed no consistent trends. Conclusions Prescribing indicators for the African region deviate significantly from the WHO reference targets. Increased collaborative efforts are urgently needed to improve medicine prescribing practices in Africa with the aim of enhancing the optimal utilization of scarce resources and averting negative health consequences

    A Modular BAM Complex in the Outer Membrane of the α-Proteobacterium Caulobacter crescentus

    Get PDF
    Mitochondria are organelles derived from an intracellular α-proteobacterium. The biogenesis of mitochondria relies on the assembly of β-barrel proteins into the mitochondrial outer membrane, a process inherited from the bacterial ancestor. Caulobacter crescentus is an α-proteobacterium, and the BAM (β-barrel assembly machinery) complex was purified and characterized from this model organism. Like the mitochondrial sorting and assembly machinery complex, we find the BAM complex to be modular in nature. A ∼150 kDa core BAM complex containing BamA, BamB, BamD, and BamE associates with additional modules in the outer membrane. One of these modules, Pal, is a lipoprotein that provides a means for anchorage to the peptidoglycan layer of the cell wall. We suggest the modular design of the BAM complex facilitates access to substrates from the protein translocase in the inner membrane

    Hypoglycemia and the Origin of Hypoxia-Induced Reduction in Human Fetal Growth

    Get PDF
    The most well known reproductive consequence of residence at high altitude (HA >2700 m) is reduction in fetal growth. Reduced fetoplacental oxygenation is an underlying cause of pregnancy pathologies, including intrauterine growth restriction and preeclampsia, which are more common at HA. Therefore, altitude is a natural experimental model to study the etiology of pregnancy pathophysiologies. We have shown that the proximate cause of decreased fetal growth is not reduced oxygen availability, delivery, or consumption. We therefore asked whether glucose, the primary substrate for fetal growth, might be decreased and/or whether altered fetoplacental glucose metabolism might account for reduced fetal growth at HA.Doppler and ultrasound were used to measure maternal uterine and fetal umbilical blood flows in 69 and 58 residents of 400 vs 3600 m. Arterial and venous blood samples from mother and fetus were collected at elective cesarean delivery and analyzed for glucose, lactate and insulin. Maternal delivery and fetal uptakes for oxygen and glucose were calculated.The maternal arterial – venous glucose concentration difference was greater at HA. However, umbilical venous and arterial glucose concentrations were markedly decreased, resulting in lower glucose delivery at 3600 m. Fetal glucose consumption was reduced by >28%, but strongly correlated with glucose delivery, highlighting the relevance of glucose concentration to fetal uptake. At altitude, fetal lactate levels were increased, insulin concentrations decreased, and the expression of GLUT1 glucose transporter protein in the placental basal membrane was reduced.Our results support that preferential anaerobic consumption of glucose by the placenta at high altitude spares oxygen for fetal use, but limits glucose availability for fetal growth. Thus reduced fetal growth at high altitude is associated with fetal hypoglycemia, hypoinsulinemia and a trend towards lactacidemia. Our data support that placentally-mediated reduction in glucose transport is an initiating factor for reduced fetal growth under conditions of chronic hypoxemia
    corecore