16 research outputs found

    Mitochondrial Oxidative Stress and Calcium-Dependent Permeability Transition are Key Players in the Mechanisms of Statins-Associated Side Effects

    Get PDF
    Statins are cholesterol-lowering medicines utilized worldwide and are associated with reduced risk of cardiovascular mortality and events. However, 0.5–10% of patients suffer from adverse effects especially on skeletal muscle. Recently, new onset of diabetes has been reported in subjects on statin therapy. Pro- and anti-oxidant effects of statins have been reported, thus fostering a debate. Previously reported data provide evidence that statins induce alterations in intracellular calcium homeostasis and mitochondrial dysfunctions that can be counteracted by antioxidants (e.g., CoQ10, creatine, and L-carnitine). Therefore, we have proposed that statin-induced inhibition of mitochondrial respiration leads to oxidative stress that opens a calcium-dependent permeability transition pore, an event that may lead to cell death. In addition, mitochondrial oxidative stress caused by statin treatment may be a signal for cellular antioxidant system responses such as catalase upregulation, possibly explaining the alleged statins’ antioxidant properties. Muscle mitochondrial dysfunction induced by statin treatment may be associated with the peripheral insulin resistance and may explain statins-induced new onset of diabetes. Together, the data presented in this review suggest that the statins’ detrimental effects can be prevented by co-administration of antioxidants

    Effects of adrenergic-stimulated lipolysis and cytokine production on in vitro mouse adipose tissue-islet interactions.

    No full text
    Inflammatory cytokines and non-esterified fatty acids (NEFAs) are obesity-linked factors that disturb insulin secretion. The aim of this study was to investigate whether pancreatic adipose tissue (pWAT) is able to generate a NEFA/cytokine overload within the pancreatic environment and as consequence to impact on insulin secretion. Pancreatic fat is a minor fat depot, therefore we used high-fat diet (HFD) feeding to induce pancreatic steatosis in mice. Relative Adipoq and Lep mRNA levels were higher in pWAT of HFD compared to chow diet mice. Regardless of HFD, Adipoq and Lep mRNA levels of pWAT were at least 10-times lower than those of epididymal fat (eWAT). Lipolysis stimulating receptors Adrb3 and Npr1 were expressed in pWAT and eWAT, and HFD reduced their expression in eWAT only. In accordance, HFD impaired lipolysis in eWAT but not in pWAT. Despite expression of Npr mRNA, lipolysis was stimulated solely by the adrenergic agonists, isoproterenol and adrenaline. Short term co-incubation of islets with CD/HFD pWAT did not alter insulin secretion. In the presence of CD/HFD eWAT, glucose stimulated insulin secretion only upon isoproterenol-induced lipolysis, i.e. in the presence of elevated NEFA. Isoproterenol augmented Il1b and Il6 mRNA levels both in pWAT and eWAT. These results suggest that an increased sympathetic activity enhances NEFA and cytokine load of the adipose microenvironment, including that of pancreatic fat, and by doing so it may alter beta-cell function

    Glucose, adrenaline and palmitate antagonistically regulate insulin and glucagon secretion in human pseudoislets.

    No full text
    Isolated human islets do not always meet the quality standards required for transplant survival and reliable functional in vitro studies. The formation of pseudoislets, i.e. the reaggregation of a defined number of islet cells after dissociation, improves insulin secretion. We present a simple method of pseudoislet formation from human islet cells and assess the transcriptome and function of isolated human islets and pseudoislets from the same organ donors. Following pseudoislet formation, insulin content/DNA and mRNA/RPS13 resembled that of islets. In pseudoislets, glucose-stimulated insulin secretion (GSIS) was significantly higher (8-13-fold) than in islets (2-4-fold). GSIS of pseudoislets was partly inhibited by the glucagon-like peptide-1 receptor (GLP-1R) antagonist exendin-9. The stimulatory effects of palmitate and forskolin at 12 mM glucose were also significantly higher in pseudoislets than in islets. Further analysis of pseudoislets revealed that regulation of secretion and insulin and glucagon content was maintained over a longer culture period (6-14 d). While adrenaline inhibited GSIS, adrenaline together with palmitate stimulated glucagon secretion 2-fold at low glucose, an effect suppressed by high glucose. Transcriptome analysis revealed that, unlike islets, pseudoislets were deprived of exocrine and endothelial cells. In conclusion, pseudoislet formation restores functional integrity of human islet cells and allows long-term in vitro testing

    FFA2-, but not FFA3-agonists inhibit GSIS of human pseudoislets: A comparative study with mouse islets and rat INS-1E cells.

    No full text
    The expression of short chain fatty acid receptors FFA2 and FFA3 in pancreatic islets raised interest in using them as drug targets for treating hyperglycemia in humans. This study aims to examine the efficacy of synthetic FFA2- and FFA3-ligands to modulate glucose-stimulated insulin secretion (GSIS) in human pseudoislets which display intact glucose responsiveness. The FFA2-agonists 4-CMTB and TUG-1375 inhibited GSIS, an effect reversed by the FFA2-antagonist CATPB. GSIS itself was not augmented by CATPB. The FFA3-agonists FHQC and 1-MCPC did not affect GSIS in human pseudoislets. For further drug evaluation we used mouse islets. The CATPB-sensitive inhibitory effect of 100 mu M 4-CMTB on GSIS was recapitulated. The inhibition was partially sensitive to the G(i/o)-protein inhibitor pertussis toxin. A previously described FFA2-dependent increase of GSIS was observed with lower concentrations of 4-CMTB (10 and 30 mu M). The stimulatory effect of 4-CMTB on secretion was prevented by the Gq-protein inhibitor FR900359. As in human pseudoislets, in mouse islets relative mRNA levels were FFAR2 > FFAR3 and FFA3-agonists did not affect GSIS. The FFA3-agonists, however, inhibited GSIS in a pertussis toxin-sensitive manner in INS-1E cells and this correlated with relative mRNA levels of Ffar3 > > Ffar2. Thus, in humans, when FFA2-activation impedes GSIS, FFA2-antagonism may reduce glycemia

    Point mutation of <em>Ffar1 </em>abrogates fatty acid-dependent insulin secretion, but protects against HFD-induced glucose intolerance.

    No full text
    Objective The fatty acid receptor 1 (FFAR1/GPR40) mediates fatty acid-dependent augmentation of glucose-induced insulin secretion (GIIS) in pancreatic &beta;-cells. Genetically engineered Ffar1-knockout/congenic mice univocally displayed impaired fatty acid-mediated insulin secretion, but in&nbsp;vivo experiments delivered controversial results regarding the function of FFAR1 in glucose homeostasis and liver steatosis. This study presents a new coisogenic mouse model carrying a point mutation in Ffar1 with functional consequence. These mice reflect the situations in humans in which point mutations can lead to protein malfunction and disease development. Methods The Munich N-ethyl-N-nitrosourea (ENU) mutagenesis-derived F1 archive containing over 16,800 sperms and corresponding DNA samples was screened for mutations in the coding region of Ffar1. Two missense mutations (R258W and T146S) in the extracellular domain of the protein were chosen and homozygote mice were generated. The functional consequence of these mutations was examined in&nbsp;vitro in isolated islets and in&nbsp;vivo in chow diet and high fat diet fed mice. Results Palmitate, 50&nbsp;&mu;M, and the FFAR1 agonist TUG-469, 3&nbsp;&mu;M, stimulated insulin secretion in islets of Ffar1T146S/T146S mutant mice and of wild-type littermates, while in islets of Ffar1R258W/R258W mutant mice, these stimulatory effects were abolished. Insulin content and mRNA levels of Ffar1, Glp1r, Ins2, Slc2a2, Ppara, and Ppard were not significantly different between wild type and Ffar1R258W/R258W mouse islets. Palmitate exposure, 600&nbsp;&mu;M, significantly increased Ppara mRNA levels in wild type but not in Ffar1R258W/R258W mouse islets. On the contrary, Slc2a2 mRNA levels were significantly reduced in both wild type and Ffar1R258W/R258W mouse islets after palmitate treatment. HFD feeding induced glucose intolerance in wild-type mice. Ffar1R258W/R258W mutant mice remained glucose tolerant although their body weight gain, liver steatosis, insulin resistance, and plasma insulin levels were not different from those of wild-type littermates. Worth mentioning, fasting plasma insulin levels were lower in Ffar1R258W/R258W mice. Conclusion A point mutation in Ffar1 abrogates the stimulatory effect of palmitate on GIIS, an effect that does not necessarily translate to HFD-induced glucose intolerance
    corecore