37 research outputs found
Identification of Novel Pro-Migratory, Cancer-Associated Genes Using Quantitative, Microscopy-Based Screening
Background: Cell migration is a highly complex process, regulated by multiple genes, signaling pathways and external stimuli. To discover genes or pharmacological agents that can modulate the migratory activity of cells, screening strategies that enable the monitoring of diverse migratory parameters in a large number of samples are necessary. Methodology: In the present study, we describe the development of a quantitative, high-throughput cell migration assay, based on a modified phagokinetic tracks (PKT) procedure, and apply it for identifying novel pro-migratory genes in a cancer-related gene library. In brief, cells are seeded on fibronectin-coated 96-well plates, covered with a monolayer of carboxylated latex beads. Motile cells clear the beads, located along their migratory paths, forming tracks that are visualized using an automated, transmitted-light screening microscope. The tracks are then segmented and characterized by multi-parametric, morphometric analysis, resolving a variety of morphological and kinetic features. Conclusions: In this screen we identified 4 novel genes derived from breast carcinoma related cDNA library, whose over-expression induces major alteration in the migration of the stationary MCF7 cells. This approach can serve for high throughput screening for novel ways to modulate cellular migration in pathological states such as tumor metastasis and invasion
The distinct roles of the nucleus and nucleus-cytoskeleton connections in three-dimensional cell migration
Cells often migrate in vivo in an extracellular matrix that is intrinsically three-dimensional (3D) and the role of actin filament architecture in 3D cell migration is less well understood. Here we show that, while recently identified linkers of nucleoskeleton to cytoskeleton (LINC) complexes play a minimal role in conventional 2D migration, they play a critical role in regulating the organization of a subset of actin filament bundles – the perinuclear actin cap - connected to the nucleus through Nesprin2giant and Nesprin3 in cells in 3D collagen I matrix. Actin cap fibers prolong the nucleus and mediate the formation of pseudopodial protrusions, which drive matrix traction and 3D cell migration. Disruption of LINC complexes disorganizes the actin cap, which impairs 3D cell migration. A simple mechanical model explains why LINC complexes and the perinuclear actin cap are essential in 3D migration by providing mechanical support to the formation of pseudopodial protrusions
Actin: its cumbersome pilgrimage through cellular compartments
In this article, we follow the history of one of the most abundant, most intensely studied proteins of the eukaryotic cells: actin. We report on hallmarks of its discovery, its structural and functional characterization and localization over time, and point to present days’ knowledge on its position as a member of a large family. We focus on the rather puzzling number of diverse functions as proposed for actin as a dual compartment protein. Finally, we venture on some speculations as to its origin
ExoClock Project III: 450 new exoplanet ephemerides from ground and space observations
The ExoClock project has been created with the aim of increasing the
efficiency of the Ariel mission. It will achieve this by continuously
monitoring and updating the ephemerides of Ariel candidates over an extended
period, in order to produce a consistent catalogue of reliable and precise
ephemerides. This work presents a homogenous catalogue of updated ephemerides
for 450 planets, generated by the integration of 18000 data points from
multiple sources. These sources include observations from ground-based
telescopes (ExoClock network and ETD), mid-time values from the literature and
light-curves from space telescopes (Kepler/K2 and TESS). With all the above, we
manage to collect observations for half of the post-discovery years (median),
with data that have a median uncertainty less than one minute. In comparison
with literature, the ephemerides generated by the project are more precise and
less biased. More than 40\% of the initial literature ephemerides had to be
updated to reach the goals of the project, as they were either of low precision
or drifting. Moreover, the integrated approach of the project enables both the
monitoring of the majority of the Ariel candidates (95\%), and also the
identification of missing data. The dedicated ExoClock network effectively
supports this task by contributing additional observations when a gap in the
data is identified. These results highlight the need for continuous monitoring
to increase the observing coverage of the candidate planets. Finally, the
extended observing coverage of planets allows us to detect trends (TTVs -
Transit Timing Variations) for a sample of 19 planets. All products, data, and
codes used in this work are open and accessible to the wider scientific
community.Comment: Recommended for publication to ApJS (reviewer's comments
implemented). Main body: 13 pages, total: 77 pages, 7 figures, 7 tables. Data
available at http://doi.org/10.17605/OSF.IO/P298
Recommended from our members
ExoClock Project. III. 450 New Exoplanet Ephemerides from Ground and Space Observations
The ExoClock project has been created to increase the efficiency of the Ariel mission. It will achieve this by continuously monitoring and updating the ephemerides of Ariel candidates, in order to produce a consistent catalog of reliable and precise ephemerides. This work presents a homogenous catalog of updated ephemerides for 450 planets, generated by the integration of ∼18,000 data points from multiple sources. These sources include observations from ground-based telescopes (the ExoClock network and the Exoplanet Transit Database), midtime values from the literature, and light curves from space telescopes (Kepler, K2, and TESS). With all the above, we manage to collect observations for half of the postdiscovery years (median), with data that have a median uncertainty less than 1 minute. In comparison with the literature, the ephemerides generated by the project are more precise and less biased. More than 40% of the initial literature ephemerides had to be updated to reach the goals of the project, as they were either of low precision or drifting. Moreover, the integrated approach of the project enables both the monitoring of the majority of the Ariel candidates (95%), and also the identification of missing data. These results highlight the need for continuous monitoring to increase the observing coverage of the candidate planets. Finally, the extended observing coverage of planets allows us to detect trends (transit-timing variations) for a sample of 19 planets. All the products, data, and codes used in this work are open and accessible to the wider scientific community
The effect of the definition used in measuring partial discharge inception voltages
At present several definitions of partial discharge inception voltage (PDIV) have been advanced by various interested groups. To establish the value of each of these definitions, four practical electrical insulating fluids were selected and their PDIV were determined according to three of these different specifications. The results of this study are presented and they suggest that the use of PDIV as a quality criterion generally is not warranted. The significance of these findings is discussed
EBV Early Lytic Protein BFRF1 Alters Emerin Distribution and Post-translational Modification
The nuclear envelope (NE), a structural element of fundamental importance for the cell, is the first barrier that meets a virus in the early stages of viral maturation. Therefore, in order to allow the passage of nucleocapsids, viruses are known to modulate the architecture of the nuclear membrane to permit a proficient viral infection. Epstein-Barr Virus (EBV), a pathogen from Herpesvirus family, possesses two well conserved proteins, BFRF1 and BFLF2, which together form the heterodimeric nuclear egress complex (NEC) that is involved in the early steps of nuclear egress. Here we show that EBV replication causes the delocalization of emerin, a cellular LEM-domain protein normally distributed on the nuclear rim. We also demonstrate that the early lytic protein BFRF1 is responsible for emerin delocalization. Expression of BFRF1 alone or in combination with BFLF2 induces emerin hyperphosphorylation. Altogether, these results suggest a novel mechanism by which EBV exploits the cellular machinery for nucleocapsid egress
Palmar metacarpophalangeal joint dislocation
Palmar dislocations of the long finger metacarpophalangeal joint are extremely rare and easily missed at the first clinical examination. We describe a palmar metacarpophalangeal dislocation of the long finger following a hyperflexion injury. The presentation, aetiology and treatment are discussed. © 1998 The British Society for Surgery of the Hand.SCOPUS: ar.jinfo:eu-repo/semantics/publishe