2,260 research outputs found

    Estimating the number of change-points in a two-dimensional segmentation model without penalization

    Full text link
    In computational biology, numerous recent studies have been dedicated to the analysis of the chromatin structure within the cell by two-dimensional segmentation methods. Motivated by this application, we consider the problem of retrieving the diagonal blocks in a matrix of observations. The theoretical properties of the least-squares estimators of both the boundaries and the number of blocks proposed by L\'evy-Leduc et al. [2014] are investigated. More precisely, the contribution of the paper is to establish the consistency of these estimators. A surprising consequence of our results is that, contrary to the onedimensional case, a penalty is not needed for retrieving the true number of diagonal blocks. Finally, the results are illustrated on synthetic data.Comment: 30 pages, 8 figure

    Biofuel production in Europe - Potential from lignocellulosic waste

    Get PDF
    The objective of this study is to analyze the biofuel potential in Europe from lignocellulosic waste (wood waste and paper and cardboard waste). Ethanol from fermentation and Fischer-Tropsch (FT) diesel from gasification are the two biofuels considered. As those biofuels are not yet commercially available, the optimal locations of the production plants have to be determined. The analysis is carried out with a geographic explicit model that minimizes the total cost of the biofuel supply chain. A mixed integer linear program is used for the optimization. The results show that ethanol production plants are selected in a majority of the studied cases. Ethanol plants are mainly set up in areas with a high heat demand and/or high electricity or heat price, whereas FT diesel production plants are set up in areas where the heat demand is low all year round. A high cost for emitting CO2 as well as high transport fossil fuel prices favor the selection of FT diesel over ethanol production plants. With a CO2 cost of 100 Euros/tCO2 applied, the biofuel production from waste can potentially meet around 4% of the European transport fuel demand

    Cost-effective policy instruments for greenhouse gas emission reduction and fossil fuel substitution through bioenergy production in Austria

    Get PDF
    Climate change mitigation and security of energy supply are important targets of Austrian energy policy. Bioenergy production based on resources from agriculture and forestry is an important option for attaining these targets. To increase the share of bioenergy in the energy supply, supporting policy instruments are necessary. The cost-effectiveness of these instruments in attaining policy targets depends on the availability of bioenergy technologies. Advanced technologies such as second generation biofuels, biomass gasification for power production, and bioenergy with carbon capture and storage (BECCS) will likely change the performance of policy instruments. This article assesses the cost-effectiveness of energy policy instruments, considering new bioenergy technologies for the year 2030, with respect to greenhouse gas emission (GHG) reduction and fossil fuel substitution. Instruments that directly subsidize bioenergy are compared with instruments that aim at reducing GHG emissions. A spatially explicit modeling approach is used to account for biomass supply and energy distribution costs in Austria. Results indicate that a carbon tax performs cost-effectively with respect to both policy targets in BECCS is not available. However, the availability of BECCS creates a trade-off between GHG emission reduction and fossil fuel substitution. Biofuel blending obligations are costly in terms of attaining the policy targets

    CHP or biofuel production in Europe?

    Get PDF
    In this study, the opportunity to invest in combined heat and power (CHP) plants and second-generation biofuel production plants in Europe is investigated. To determine the number and type of production plants, a mixed integer linear model is used, based on minimization of the total cost of the whole suply chain. Different policy scenarios are studied with varying values of carbon cost and biofuel support. The study focuses on the type of technology to invest in and the CO2 emission substitution potential, at constant energy prices. The CHP plants and the biofuel production plants are competing for the same feedstock (forest biomass), which is available in limited quantities. The results show that CP plants are preferred over biofuel production plants at high carbon costs (over 50 EUR/tCO2) and low biofuel support (below 10 EUR/GJ), whereas more biofuel production plants would be set up at high biofuel support (over 15 EUR/GJ), irrespective of the carbon cost. Regarding the CO2 emission substitution potential, the highest potential can be reached at a high carbon cost and low biofuel support. It is concluded that there is a potential conflict of interest between policies promoting increased use of biofuels, and policies aiming at decreased CO2 emissions

    A novel approach for estimating functions in the multivariate setting based on an adaptive knot selection for B-splines with an application to a chemical system used in geoscience

    Full text link
    In this paper, we will outline a novel data-driven method for estimating functions in a multivariate nonparametric regression model based on an adaptive knot selection for B-splines. The underlying idea of our approach for selecting knots is to apply the generalized lasso, since the knots of the B-spline basis can be seen as changes in the derivatives of the function to be estimated. This method was then extended to functions depending on several variables by processing each dimension independently, thus reducing the problem to a univariate setting. The regularization parameters were chosen by means of a criterion based on EBIC. The nonparametric estimator was obtained using a multivariate B-spline regression with the corresponding selected knots. Our procedure was validated through numerical experiments by varying the number of observations and the level of noise to investigate its robustness. The influence of observation sampling was also assessed and our method was applied to a chemical system commonly used in geoscience. For each different framework considered in this paper, our approach performed better than state-of-the-art methods. Our completely data-driven method is implemented in the glober R package which will soon be available on the Comprehensive R Archive Network (CRAN).Comment: 29 pages, 29 figure

    SAMBA: Superconducting antenna-coupled, multi-frequency, bolometric array

    Get PDF
    We present a design for a multipixel, multiband (100 GHz, 200 GHz and 400 GHz) submillimeter instrument: SAMBA (Superconducting Antenna-coupled, Multi-frequency, Bolometric Array). SAMBA uses slot antenna coupled bolometers and microstrip filters. The concept allows for a much more compact, multiband imager compared to a comparable feedhorn-coupled bolometric system. SAMBA incorporates an array of slot antennas, superconducting transmission lines, a wide band multiplexer and superconducting transition edge bolometers. The transition-edge film measures the millimeter-wave power deposited in the resistor that terminates the transmission line

    Integrated Focal Plane Arrays for Millimeter-wave Astronomy

    Get PDF
    We are developing focal plane arrays of bolometric detectors for sub-millimeter and millimeter-wave astrophysics. We propose a flexible array architecture using arrays of slot antennae coupled via low-loss superconducting Nb transmission line to microstrip filters and antenna-coupled bolometers. By combining imaging and filtering functions with transmission line, we are able to realize unique structures such as a multi-band polarimeter and a planar, dispersive spectrometer. Micro-strip bolometers have significantly smaller active volume than standard detectors with extended absorbers, and can realize higher sensitivity and speed of response. The integrated array has natural immunity to stray radiation or spectral leaks, and minimizes the suspended mass operating at 0.1 - 0.3 K. We also discuss future space-borne spectroscopy and polarimetry applications

    Frequency shifts of photoassociative spectra of ultracold metastable Helium atoms : a new measurement of the s-wave scattering length

    Full text link
    We observe light-induced frequency shifts in one-color photoassociative spectra of magnetically trapped 4^4He∗^* atoms in the metastable 23S12^3S_1 state. A pair of ultracold spin-polarized 23S12^3S_1 helium atoms is excited into a molecular bound state in the purely long range 0u+0_u^+ potential connected to the 23S1−23P02^3S_1 - 2^3P_0 asymptote. The shift arises from the optical coupling of the molecular excited bound state with the scattering states and the bound states of two colliding 23S12^3S_1 atoms. We measure the frequency-shifts for several ro-vibrational levels in the 0u+0^+_u potential and find a linear dependence on the photoassociation laser intensity. Comparison with a theoretical analysis provides a good indication for the s-wave scattering length aa of the quintet (5Σg+^5\Sigma_g^+) potential, a=7.2±0.6a=7.2\pm 0.6 nm, which is significantly lower than most previous results obtained by non-spectroscopic methods.Comment: 7 pages, 4 figure
    • …
    corecore