23 research outputs found
Phase Synchronization in Railway Timetables
Timetable construction belongs to the most important optimization problems in
public transport. Finding optimal or near-optimal timetables under the
subsidiary conditions of minimizing travel times and other criteria is a
targeted contribution to the functioning of public transport. In addition to
efficiency (given, e.g., by minimal average travel times), a significant
feature of a timetable is its robustness against delay propagation. Here we
study the balance of efficiency and robustness in long-distance railway
timetables (in particular the current long-distance railway timetable in
Germany) from the perspective of synchronization, exploiting the fact that a
major part of the trains run nearly periodically. We find that synchronization
is highest at intermediate-sized stations. We argue that this synchronization
perspective opens a new avenue towards an understanding of railway timetables
by representing them as spatio-temporal phase patterns. Robustness and
efficiency can then be viewed as properties of this phase pattern
Laser assisted modification and chemical metallization of electron-beam deposited ceria thin films
Excimer laser processing is applied for tailoring the surface morphology and phase composition of CeO2 ceramic thin films. E-beam evaporation technique is used to deposit samples on stainless steel and silicate glass substrates. The films are then irradiated with ArF* excimer laser pulses under different exposure conditions. Scanning electron microscopy, optical spectrophotometry, X-ray diffractometry and EDS microanalysis are used to characterize the non-irradiated and laser-processed films. Upon UV laser exposure there is large increase of the surface roughness that is accompanied by photo-darkening and ceria reduction. It is shown that the laser induced changes in the CeO2 films facilitate the deposition of metal nano-aggregates in a commercial copper electroless plating bath. The significance of laser modification as a novel approach for the production of CeO2 based thin film catalysts is discussed. © 2009 Elsevier B.V. All rights reserved.This work has been performed in the frame of the Bulgarian-Spanish Scientific Cooperation Agreement, supported by the Bulgarian Academy of Sciences and the National Research Council of Spain (CSIC).Peer Reviewe
Quantitative mapping of global land degradation using Earth observations
Land degradation is a global issue on par with climate change and loss of biodiversity, but its extent and severity are only roughly known and there is little detail on the immediate processes â let alone the drivers. Earth-observation methods enable monitoring of land degradation in a consistent, physical way and on a global scale by making use of vegetation productivity and/or loss as proxies. Most recent studies indicate a general greening trend, but improved data sets and analysis also show a combination of greening and browning trends. Statistically based linear trends average out these effects. Improved understanding may be expected from data-driven and process-modelling approaches: new models, model integration, enhanced statistical analysis and modern sensor imagery at medium spatial resolution should substantially improve the assessment of global land degradation