6 research outputs found

    Gating of aquaporins by heavy metals in Allium cepa L. epidermal cells

    Get PDF
    Changes in the water permeability, aquaporin (AQP) activity, of leaf cells were investigated in response to different heavy metals (Zn2+, Pb2+, Cd2+, Hg2+). The cell pressure probe experiments were performed on onion epidermal cells as a model system. Heavy metal solutions at different concentrations (0.05 μM–2 mM) were used in our experiments. We showed that the investigated metal ions can be arranged in order of decreasing toxicity (expressed as a decrease in water permeability) as follows: Hg>Cd>Pb>Zn. Our results showed that β-mercaptoethanol treatment (10 mM solution) partially reverses the effect of AQP gating. The magnitude of this reverse differed depending on the metal and its concentration. The time course studies of the process showed that the gating of AQPs occurred within the first 10 min after the application of a metal. We also showed that after 20–40 min from the onset of metal treatment, the water flow through AQPs stabilized and remained constant. We observed that irrespective of the metal applied, the effect of AQP gating can be recorded within the first 10 min after the administration of metal ions. More generally, our results indicate that the toxic effects of investigated metal ions on the cellular level may involve AQP gating

    A Geometric Functional for Derivatives Approximation

    No full text

    Color image enhancement by a forward-and-backward adaptive Beltrami flow

    No full text
    Abstract. The Beltrami diffusion-type process, reformulated for the purpose of image processing, is generalized to an adaptive forward-andbackward process and applied in localized image features ’ enhancement and denoising. Images are considered as manifolds, embedded in higher dimensional feature-spaces that incorporate image attributes and features such as edges, color, texture, orientation and convexity. To control and stabilize the process, a nonlinear structure tensor is incorporated. The structure tensor is locally adjusted according to a gradient-type measure. Whereas for smooth areas it assumes positive values, and thus the diffusion is forward, for edges (large gradients) it becomes negative and the diffusion switches to a backward (inverse) process. The resultant combined forward-and-backward process accomplishes both local denoising and feature enhancement
    corecore