13 research outputs found

    Automated deep learning in ophthalmology: AI that can build AI

    Get PDF
    PURPOSE OF REVIEW: The purpose of this review is to describe the current status of automated deep learning in healthcare and to explore and detail the development of these models using commercially available platforms. We highlight key studies demonstrating the effectiveness of this technique and discuss current challenges and future directions of automated deep learning. RECENT FINDINGS: There are several commercially available automated deep learning platforms. Although specific features differ between platforms, they utilise the common approach of supervised learning. Ophthalmology is an exemplar speciality in the area, with a number of recent proof-of-concept studies exploring classification of retinal fundus photographs, optical coherence tomography images and indocyanine green angiography images. Automated deep learning has also demonstrated impressive results in other specialities such as dermatology, radiology and histopathology. SUMMARY: Automated deep learning allows users without coding expertise to develop deep learning algorithms. It is rapidly establishing itself as a valuable tool for those with limited technical experience. Despite residual challenges, it offers considerable potential in the future of patient management, clinical research and medical education. VIDEO ABSTRACT: http://links.lww.com/COOP/A44

    Clinician-driven artificial intelligence in ophthalmology: resources enabling democratization

    Get PDF
    PURPOSE OF REVIEW: This article aims to discuss the current state of resources enabling the democratization of artificial intelligence (AI) in ophthalmology. RECENT FINDINGS: Open datasets, efficient labeling techniques, code-free automated machine learning (AutoML) and cloud-based platforms for deployment are resources that enable clinicians with scarce resources to drive their own AI projects. SUMMARY: Clinicians are the use-case experts who are best suited to drive AI projects tackling patient-relevant outcome measures. Taken together, open datasets, efficient labeling techniques, code-free AutoML and cloud platforms break the barriers for clinician-driven AI. As AI becomes increasingly democratized through such tools, clinicians and patients stand to benefit greatly

    Re-evaluating diabetic papillopathy using optical coherence tomography and inner retinal sublayer analysis.

    Get PDF
    BACKGROUND/OBJECTIVES: To re-evaluate diabetic papillopathy using optical coherence tomography (OCT) for quantitative analysis of the peripapillary retinal nerve fibre layer (pRNFL), macular ganglion cell layer (mGCL) and inner nuclear layer (mINL) thickness. SUBJECTS/METHODS: In this retrospective observational case series between June 2008 and July 2019 at Moorfields Eye hospital, 24 eyes of 22 patients with diabetes and optic disc swelling with confirmed diagnosis of NAION or diabetic papillopathy by neuro-ophthalmological assessment were included for evaluation of the pRNFL, mGCL and mINL thicknesses after resolution of optic disc swelling. RESULTS: The mean age of included patients was 56.5 (standard deviation (SD) ± 14.85) years with a mean follow-up duration of 216 days. Thinning of pRNFL (mean: 66.26, SD ± 31.80 µm) and mGCL (mean volume: 0.27 mm3, SD ± 0.09) were observed in either group during follow-up, the mINL volume showed no thinning with 0.39 ± 0.05 mm3. The mean decrease in visual acuity was 4.13 (SD ± 14.27) ETDRS letters with a strong correlation between mGCL thickness and visual acuity (rho 0.74, p < 0.001). CONCLUSION: After resolution of acute optic disc swelling, atrophy of pRNFL and mGCL became apparent in all cases of diabetic papillopathy and diabetic NAION, with preservation of mINL volumes. Analysis of OCT did not provide a clear diagnostic distinction between both entities. We suggest a diagnostic overlay with the degree of pRNFL and mGCL atrophy of prognostic relevance for poor visual acuity independent of the semantics of terminology

    Code-free deep learning for multi-modality medical image classification

    Get PDF
    © 2021, The Author(s). A number of large technology companies have created code-free cloud-based platforms that allow researchers and clinicians without coding experience to create deep learning algorithms. In this study, we comprehensively analyse the performance and featureset of six platforms, using four representative cross-sectional and en-face medical imaging datasets to create image classification models. The mean (s.d.) F1 scores across platforms for all model–dataset pairs were as follows: Amazon, 93.9 (5.4); Apple, 72.0 (13.6); Clarifai, 74.2 (7.1); Google, 92.0 (5.4); MedicMind, 90.7 (9.6); Microsoft, 88.6 (5.3). The platforms demonstrated uniformly higher classification performance with the optical coherence tomography modality. Potential use cases given proper validation include research dataset curation, mobile ‘edge models’ for regions without internet access, and baseline models against which to compare and iterate bespoke deep learning approaches

    Quantitative analysis of optical coherence tomography for neovascular age-related macular degeneration using deep learning

    Get PDF
    PURPOSE: To apply a deep learning algorithm for automated, objective, and comprehensive quantification of optical coherence tomography (OCT) scans to a large real-world dataset of eyes with neovascular age-related macular degeneration (AMD), and make the raw segmentation output data openly available for further research. DESIGN: Retrospective analysis of OCT images from the Moorfields Eye Hospital AMD Database. PARTICIPANTS: 2473 first-treated eyes and another 493 second-treated eyes that commenced therapy for neovascular AMD between June 2012 and June 2017. METHODS: A deep learning algorithm was used to segment all baseline OCT scans. Volumes were calculated for segmented features such as neurosensory retina (NSR), drusen, intraretinal fluid (IRF), subretinal fluid (SRF), subretinal hyperreflective material (SHRM), retinal pigment epithelium (RPE), hyperreflective foci (HRF), fibrovascular pigment epithelium detachment (fvPED), and serous PED (sPED). Analyses included comparisons between first and second eyes, by visual acuity (VA) and by race/ethnicity, and correlations between volumes. MAIN OUTCOME MEASURES: Volumes of segmented features (mm3), central subfield thickness (CST) (μm). RESULTS: In first-treated eyes, the majority had both IRF and SRF (54.7%). First-treated eyes had greater volumes for all segmented tissues, with the exception of drusen, which was greater in second-treated eyes. In first-treated eyes, older age was associated with lower volumes for RPE, SRF, NSR and sPED; in second-treated eyes, older age was associated with lower volumes of NSR, RPE, sPED, fvPED and SRF. Eyes from black individuals had higher SRF, RPE and serous PED volumes, compared with other ethnic groups. Greater volumes of the vast majority of features were associated with worse VA. CONCLUSION: We report the results of large scale automated quantification of a novel range of baseline features in neovascular AMD. Major differences between first and second-treated eyes, with increasing age, and between ethnicities are highlighted. In the coming years, enhanced, automated OCT segmentation may assist personalization of real-world care, and the detection of novel structure-function correlations. These data will be made publicly available for replication and future investigation by the AMD research community

    Feasibility of Automated Deep Learning Design for Medical Image Classification by Healthcare Professionals with Limited Coding Experience

    Get PDF
    Deep learning has huge potential to transform healthcare. However, significant expertise is required to train such models and this is a significant blocker for their translation into clinical practice. In this study, we therefore sought to evaluate the use of automated deep learning software to develop medical image diagnostic classifiers by healthcare professionals with limited coding – and no deep learning – expertise. We used five publicly available open-source datasets: (i) retinal fundus images (MESSIDOR); (ii) optical coherence tomography (OCT) images (Guangzhou Medical University/Shiley Eye Institute, Version 3); (iii) images of skin lesions (Human against Machine (HAM)10000) and (iv) both paediatric and adult chest X-ray (CXR) images (Guangzhou Medical University/Shiley Eye Institute, Version 3 and the National Institute of Health (NIH)14 dataset respectively) to separately feed into a neural architecture search framework that automatically developed a deep learning architecture to classify common diseases. Sensitivity (recall), specificity and positive predictive value (precision) were used to evaluate the diagnostic properties of the models. The discriminative performance was assessed using the area under the precision recall curve (AUPRC). In the case of the deep learning model developed on a subset of the HAM10000 dataset, we performed external validation using the Edinburgh Dermofit Library dataset. Diagnostic properties and discriminative performance from internal validations were high in the binary classification tasks (range: sensitivity of 73.3-97.0%, specificity of 67-100% and AUPRC of 0.87-1). In the multiple classification tasks, the diagnostic properties ranged from 38-100% for sensitivity and 67-100% for specificity. The discriminative performance in terms of AUPRC ranged from 0.57 to 1 in the five automated deep learning models. In an external validation using the Edinburgh Dermofit Library dataset, the automated deep learning model showed an AUPRC of 0.47, with a sensitivity of 49% and a positive predictive value of 52%. The quality of the open-access datasets used in this study (including the lack of information about patient flow and demographics) and the absence of measurement for precision, such as confidence intervals, constituted the major limitation of this study. All models, except for the automated deep learning model trained on the multi-label classification task of the NIH CXR14 dataset, showed comparable discriminative performance and diagnostic properties to state-of-the-art performing deep learning algorithms. The performance in the external validation study was low. The availability of automated deep learning may become a cornerstone for the democratization of sophisticated algorithmic modelling in healthcare as it allows the derivation of classification models without requiring a deep understanding of the mathematical, statistical and programming principles. Future studies should compare several application programming interfaces on thoroughly curated datasets

    Enablers and Barriers to Deployment of Smartphone-Based Home Vision Monitoring in Clinical Practice Settings

    Get PDF
    Importance: Telemedicine is accelerating the remote detection and monitoring of medical conditions, such as vision-threatening diseases. Meaningful deployment of smartphone apps for home vision monitoring should consider the barriers to patient uptake and engagement and address issues around digital exclusion in vulnerable patient populations. Objective: To quantify the associations between patient characteristics and clinical measures with vision monitoring app uptake and engagement. Design, Setting, and Participants: In this cohort and survey study, consecutive adult patients attending Moorfields Eye Hospital receiving intravitreal injections for retinal disease between May 2020 and February 2021 were included. Exposures: Patients were offered the Home Vision Monitor (HVM) smartphone app to self-test their vision. A patient survey was conducted to capture their experience. App data, demographic characteristics, survey results, and clinical data from the electronic health record were analyzed via regression and machine learning. Main Outcomes and Measures: Associations of patient uptake, compliance, and use rate measured in odds ratios (ORs). Results: Of 417 included patients, 236 (56.6%) were female, and the mean (SD) age was 72.8 (12.8) years. A total of 258 patients (61.9%) were active users. Uptake was negatively associated with age (OR, 0.98; 95% CI, 0.97-0.998; P = .02) and positively associated with both visual acuity in the better-seeing eye (OR, 1.02; 95% CI, 1.00-1.03; P = .01) and baseline number of intravitreal injections (OR, 1.01; 95% CI, 1.00-1.02; P = .02). Of 258 active patients, 166 (64.3%) fulfilled the definition of compliance. Compliance was associated with patients diagnosed with neovascular age-related macular degeneration (OR, 1.94; 95% CI, 1.07-3.53; P = .002), White British ethnicity (OR, 1.69; 95% CI, 0.96-3.01; P = .02), and visual acuity in the better-seeing eye at baseline (OR, 1.02; 95% CI, 1.01-1.04; P = .04). Use rate was higher with increasing levels of comfort with use of modern technologies (β = 0.031; 95% CI, 0.007-0.055; P = .02). A total of 119 patients (98.4%) found the app either easy or very easy to use, while 96 (82.1%) experienced increased reassurance from using the app. Conclusions and Relevance: This evaluation of home vision monitoring for patients with common vision-threatening disease within a clinical practice setting revealed demographic, clinical, and patient-related factors associated with patient uptake and engagement. These insights inform targeted interventions to address risks of digital exclusion with smartphone-based medical devices

    Automated deep learning design for medical image classification by health-care professionals with no coding experience: a feasibility study

    Get PDF
    Background Deep learning has the potential to transform health care; however, substantial expertise is required to train such models. We sought to evaluate the utility of automated deep learning software to develop medical image diagnostic classifiers by health-care professionals with no coding—and no deep learning—expertise. Methods We used five publicly available open-source datasets: retinal fundus images (MESSIDOR); optical coherence tomography (OCT) images (Guangzhou Medical University and Shiley Eye Institute, version 3); images of skin lesions (Human Against Machine [HAM] 10000), and both paediatric and adult chest x-ray (CXR) images (Guangzhou Medical University and Shiley Eye Institute, version 3 and the National Institute of Health [NIH] dataset, respectively) to separately feed into a neural architecture search framework, hosted through Google Cloud AutoML, that automatically developed a deep learning architecture to classify common diseases. Sensitivity (recall), specificity, and positive predictive value (precision) were used to evaluate the diagnostic properties of the models. The discriminative performance was assessed using the area under the precision recall curve (AUPRC). In the case of the deep learning model developed on a subset of the HAM10000 dataset, we did external validation using the Edinburgh Dermofit Library dataset. Findings Diagnostic properties and discriminative performance from internal validations were high in the binary classification tasks (sensitivity 73·3–97·0%; specificity 67–100%; AUPRC 0·87–1·00). In the multiple classification tasks, the diagnostic properties ranged from 38% to 100% for sensitivity and from 67% to 100% for specificity. The discriminative performance in terms of AUPRC ranged from 0·57 to 1·00 in the five automated deep learning models. In an external validation using the Edinburgh Dermofit Library dataset, the automated deep learning model showed an AUPRC of 0·47, with a sensitivity of 49% and a positive predictive value of 52%. Interpretation All models, except the automated deep learning model trained on the multilabel classification task of the NIH CXR14 dataset, showed comparable discriminative performance and diagnostic properties to state-of-the-art performing deep learning algorithms. The performance in the external validation study was low. The quality of the open-access datasets (including insufficient information about patient flow and demographics) and the absence of measurement for precision, such as confidence intervals, constituted the major limitations of this study. The availability of automated deep learning platforms provide an opportunity for the medical community to enhance their understanding in model development and evaluation. Although the derivation of classification models without requiring a deep understanding of the mathematical, statistical, and programming principles is attractive, comparable performance to expertly designed models is limited to more elementary classification tasks. Furthermore, care should be placed in adhering to ethical principles when using these automated models to avoid discrimination and causing harm. Future studies should compare several application programming interfaces on thoroughly curated datasets
    corecore