97 research outputs found

    Emergence of Carbapenem resistant Gram negative and vancomycin resistant Gram positive organisms in bacteremic isolates of febrile neutropenic patients: A descriptive study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study was conducted to evaluate drug resistance amongst bacteremic isolates of febrile neutropenic patients with particular emphasis on emergence of carbapenem resistant Gram negative bacteria and vancomycin resistant <it>Enterococcus </it>species.</p> <p>Methods</p> <p>A descriptive study was performed by reviewing the blood culture reports from febrile neutropenic patients during the two study periods i.e., 1999–00 and 2001–06. Blood cultures were performed using BACTEC 9240 automated system. Isolates were identified and antibiotic sensitivities were done using standard microbiological procedures.</p> <p>Results</p> <p>Seven twenty six febrile neutropenic patients were admitted during the study period. A total of 5840 blood cultures were received, off these 1048 (18%) were culture positive. Amongst these, 557 (53%) grew Gram positive bacteria, 442 (42%) grew Gram negative bacteria, 43 (4%) fungi and 6 (1%) anaerobes. Sixty (5.7%) out of 1048 positive blood cultures were polymicrobial. In the Gram negative bacteria, <it>Enterobacteriaceae </it>was the predominant group; <it>E. coli </it>was the most frequently isolated organism in both study periods. Amongst non- Enterobacteriaceae group, <it>Pseudomonas aeruginosa </it>was the commonest organism isolated during first study period followed by <it>Acinetobacter </it>spp. However, during the second period <it>Acinetobacter </it>species was the most frequent pathogen.</p> <p><it>Enterobacteriaceae </it>group showed higher statistically significant resistance in the second study period against ceftriaxone, quinolone and piperacillin/tazobactam, whilst no resistance observed against imipenem/meropenem. The susceptibility pattern of <it>Acinetobacter </it>species shifted from sensitive to highly resistant one with significant p values against ceftriaxone, quinolone, piperacillin/tazobactam and imipenem/meropenem. Amongst Gram positive bacteria, MRSA isolation rate remained static, vancomycin resistant <it>Enterococcus </it>species emerged in second study period while no <it>Staphylococcus </it>species resistant to vancomycin was noted.</p> <p>Conclusion</p> <p>This rising trend of highly resistant organisms stresses the increasing importance of continuous surveillance system and stewardship of antibiotics as strategies in the overall management of patients with febrile neutropenia.</p

    Liquid and vapour-phase antifungal activities of selected essential oils against candida albicans: microscopic observations and chemical characterization of cymbopogon citratus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Use of essential oils for controlling <it>Candida albicans </it>growth has gained significance due to the resistance acquired by pathogens towards a number of widely-used drugs. The aim of this study was to test the antifungal activity of selected essential oils against <it>Candida albicans </it>in liquid and vapour phase and to determine the chemical composition and mechanism of action of most potent essential oil.</p> <p>Methods</p> <p>Minimum Inhibitory concentration (MIC) of different essential oils in liquid phase, assayed through agar plate dilution, broth dilution & 96-well micro plate dilution method and vapour phase activity evaluated through disc volatilization method. Reduction of <it>C. albicans </it>cells with vapour exposure was estimated by kill time assay. Morphological alteration in treated/untreated <it>C. albicans </it>cells was observed by the Scanning electron microscopy (SEM)/Atomic force microscopy (AFM) and chemical analysis of the strongest antifungal agent/essential oil has been done by GC, GC-MS.</p> <p>Results</p> <p>Lemon grass (<it>Cymbopogon citratus</it>) essential oil exhibited the strongest antifungal effect followed by mentha (<it>Mentha piperita</it>) and eucalyptus (<it>Eucalyptus globulus</it>) essential oil. The MIC of lemon grass essential oil in liquid phase (288 mg/l) was significantly higher than that in the vapour phase (32.7 mg/l) and a 4 h exposure was sufficient to cause 100% loss in viability of <it>C. albicans </it>cells. SEM/AFM of <it>C. albicans </it>cells treated with lemon grass essential oil at MIC level in liquid and vapour phase showed prominent shrinkage and partial degradation, respectively, confirming higher efficacy of vapour phase. GC-MS analysis revealed that lemon grass essential oil was dominated by oxygenated monoterpenes (78.2%); α-citral or geranial (36.2%) and β-citral or neral (26.5%), monoterpene hydrocarbons (7.9%) and sesquiterpene hydrocarbons (3.8%).</p> <p>Conclusion</p> <p>Lemon grass essential oil is highly effective in vapour phase against <it>C. albicans</it>, leading to deleterious morphological changes in cellular structures and cell surface alterations.</p
    corecore