8 research outputs found

    Bronchiolitis: an update on management and prophylaxis.

    Get PDF
    Bronchiolitis is an acute respiratory illness that is the leading cause of hospitalization in young children less than 2 years of age in the UK. Respiratory syncytial virus is the most common virus associated with bronchiolitis and has the highest disease severity, mortality and cost. Bronchiolitis is generally a self-limiting condition, but can have serious consequences in infants who are very young, premature, or have underlying comorbidities. Management of bronchiolitis in the UK is guided by the National Institute for Health and Care Excellence (2015) guidance. The mainstays of management are largely supportive, consisting of fluid management and respiratory support. Pharmacological interventions including nebulized bronchodilators, steroids and antibiotics generally have limited or no evidence of efficacy and are not advised by National Institute of Health and Care Excellence. Antiviral therapeutics remain in development. As treatments are limited, there have been extensive efforts to develop vaccines, mainly targeting respiratory syncytial virus. At present, the only licensed product is a monoclonal antibody for passive immunisation. Its cost restricts its use to those at highest risk. Vaccines for active immunisation of pregnant women and young infants are also being developed

    Ten-year single-center experience of the ketogenic diet: factors influencing efficacy, tolerability, and compliance

    No full text
    Objectives To evaluate the efficacy, tolerability, and compliance of 3 ketogenic diets, the classical ketogenic diet, medium-chain triglyceride (MCT), and modified Atkins diet. Study design A single-center, retrospective study of 48 children with intractable epilepsy receiving ketogenic diets from 2003 to 2012. Patient demographics, epilepsy history, nutritional management, and side effects were collated. Compliance and tolerability were assessed by recording reasons for diet modification and cessation. The value of potassium citrate supplementation for preventing nephrolithiasis was reviewed. Results Median age at ketogenic diet initiation was 3.8 years (IQR: 2.3-7 years). The majority had intractable epilepsy, and 33 of the 48 children (69%) had epileptic encephalopathies. Three (6%) patients became seizure free, 35 (73%) reported \u3c50%-90% reduction, and 10 (21%) had 0%-50% reduction during a 2-year period. Diet duration or ketogenic diet type did not predict reduction in seizures (P = .381; P = .272). Constipation (n = 31, 65%) was very common. Food refusal (n = 3, 6%) and poor parental compliance (n = 5, 10%) were common reasons cited for cessation. There were lower rates of side effects for modified Atkins diet. Diet cessation was greatest for MCT; however, 3 patients on MCT ceased therapy because adequate seizure control was achieved. Nephrolithiasis was reported in 1 patient before potassium citrate was used and 2 patients noncompliant with potassium citrate supplementation developed hypercalciuria. Conclusion The 3 ketogenic diets were comparably effective in seizure control and generally well-tolerated. Potassium citrate supplementation is an effective prophylactic supplement for the prevention of nephrolithiasis

    miR-122 promotes virus-induced lung disease by targeting SOCS1

    Get PDF
    Virus-induced respiratory tract infections are a major health burden in childhood, and available treatments are supportive rather than disease modifying. Rhinoviruses (RVs), the cause of approximately 80% of common colds, are detected in nearly half of all infants with bronchiolitis and the majority of children with an asthma exacerbation. Bronchiolitis in early life is a strong risk factor for the development of asthma. Here, we found that RV infection induced the expression of miRNA 122 (miR-122) in mouse lungs and in human airway epithelial cells. In vivo inhibition specifically in the lung reduced neutrophilic inflammation and CXCL2 expression, boosted innate IFN responses, and ameliorated airway hyperreactivity in the absence and in the presence of allergic lung inflammation. Inhibition of miR-122 in the lung increased the levels of suppressor of cytokine signaling 1 (SOCS1), which is an in vitro-validated target of miR-122. Importantly, gene silencing of SOCS1 in vivo completely reversed the protective effects of miR-122 inhibition on RV-induced lung disease. Higher miR-122 expression in nasopharyngeal aspirates was associated with a longer time on oxygen therapy and a higher rate of treatment failure in 87 infants hospitalized with moderately severe bronchiolitis. These results suggest that miR-122 promotes RV-induced lung disease via suppression of its target SOCS1 in vivo. Higher miR-122 expression was associated with worse clinical outcomes, highlighting the potential use of anti-miR-122 oligonucleotides, successfully trialed for treatment of hepatitis C, as potential therapeutics for RV-induced bronchiolitis and asthma exacerbations
    corecore