29,757 research outputs found

    Toward a unified light curve model for multi-wavelength observations of V1974 Cygni (Nova Cygni 1992)

    Full text link
    We present a unified model for optical, ultraviolet (UV), and X-ray light curves of V1974 Cygni (Nova Cygni 1992). Based on an optically thick wind model of nova outbursts, we have calculated light curves and searched for the best fit model that is consistent with optical, UV, and X-ray observations. Our best fit model is a white dwarf (WD) of mass 1.05 M_\sun with a chemical composition of X=0.46, C+N+O=0.15, and Ne = 0.05 by mass weight. Both supersoft X-ray and continuum UV 1455 \AA light curves are well reproduced. Supersoft X-rays emerged on day ~ 250 after outburst, which is naturally explained by our model: our optically thick winds cease on day 245 and supersoft X-rays emerge from self-absorption by the winds. The X-ray flux keeps a constant peak value for ~ 300 days followed by a quick decay on day ~ 600. The duration of X-ray flat peak is well reproduced by a steady hydrogen shell burning on the WD. Optical light curve is also explained by the same model if we introduce free-free emission from optically thin ejecta. A t^{-1.5} slope of the observed optical and infrared fluxes is very close to the slope of our modeled free-free light curve during the optically thick wind phase. Once the wind stops, optical and infrared fluxes should follow a t^{-3} slope, derived from a constant mass of expanding ejecta. An abrupt transition from a t^{-1.5} slope to a t^{-3} slope at day ~ 200 is naturally explained by the change from the wind phase to the post-wind phase on day ~ 200. The development of hard X-ray flux is also reasonably understood as shock-origin between the wind and the companion star. The distance to V1974 Cyg is estimated to be ~ 1.7 kpc with E(B-V)= 0.32 from the light curve fitting for the continuum UV 1455 \AA.Comment: 8 pages, 4 figures, to appear in the Astrophysical Journa

    The X-ray Outburst of H1743-322: High-Frequency QPOs with a 3:2 Frequency Ratio

    Full text link
    We observed the 2003 X-ray outburst of H1743-322 in a series of 130 pointed observation with RXTE. We searched individual observations for high-frequency QPOs (HFQPOs) and found only weak or marginal detections near 240 and 160 Hz. We next grouped the observations in several different ways and computed the average power-density spectra (PDS) in a search for further evidence of HFQPOs. This effort yielded two significant results for those observations defined by the presence of low-frequency QPOs (0.1-20 Hz) and an absence of ``band-limited'' power continua: (1) The 9 time intervals with the highest 7-35 keV count rates yielded an average PDS with a QPO at 166±5166 \pm 5 Hz. (4.1σ4.1 \sigma; 3--35 keV); and (2) a second group with lower 7-35 keV count rates (26 intervals) produced an average PDS with a QPO at 242±3242 \pm 3 Hz (6.0σ6.0 \sigma; 7--35 keV). The ratio of these two frequencies is 1.46±0.051.46 \pm 0.05. This finding is consistent with results obtained for three other black hole systems that exhibit commensurate HFQPOs in a 3:2 ratio. Furthermore, the occurrence of H1743-322's slower HFQPO at times of higher X-ray luminosity closely resembles the behavior of XTE J1550-564 and GRO J1655-40. We discuss our results in terms of a resonance model that invokes frequencies set by general relativity for orbital motions near a black-hole event horizon.Comment: 12 pages, 3 figures, submitted to Ap

    Analytic structure of Bloch functions for linear molecular chains

    Full text link
    This paper deals with Hamiltonians of the form H=-{\bf \nabla}^2+v(\rr), with v(\rr) periodic along the zz direction, v(x,y,z+b)=v(x,y,z)v(x,y,z+b)=v(x,y,z). The wavefunctions of HH are the well known Bloch functions \psi_{n,\lambda}(\rr), with the fundamental property ψn,λ(x,y,z+b)=λψn,λ(x,y,z)\psi_{n,\lambda}(x,y,z+b)=\lambda \psi_{n,\lambda}(x,y,z) and zψn,λ(x,y,z+b)=λzψn,λ(x,y,z)\partial_z\psi_{n,\lambda}(x,y,z+b)=\lambda \partial_z\psi_{n,\lambda}(x,y,z). We give the generic analytic structure (i.e. the Riemann surface) of \psi_{n,\lambda}(\rr) and their corresponding energy, En(λ)E_n(\lambda), as functions of λ\lambda. We show that En(λ)E_n(\lambda) and ψn,λ(x,y,z)\psi_{n,\lambda}(x,y,z) are different branches of two multi-valued analytic functions, E(λ)E(\lambda) and ψλ(x,y,z)\psi_\lambda(x,y,z), with an essential singularity at λ=0\lambda=0 and additional branch points, which are generically of order 1 and 3, respectively. We show where these branch points come from, how they move when we change the potential and how to estimate their location. Based on these results, we give two applications: a compact expression of the Green's function and a discussion of the asymptotic behavior of the density matrix for insulating molecular chains.Comment: 13 pages, 11 figure

    On the convergence of second order spectra and multiplicity

    Full text link
    Let A be a self-adjoint operator acting on a Hilbert space. The notion of second order spectrum of A relative to a given finite-dimensional subspace L has been studied recently in connection with the phenomenon of spectral pollution in the Galerkin method. We establish in this paper a general framework allowing us to determine how the second order spectrum encodes precise information about the multiplicity of the isolated eigenvalues of A. Our theoretical findings are supported by various numerical experiments on the computation of inclusions for eigenvalues of benchmark differential operators via finite element bases.Comment: 22 pages, 2 figures, 4 tables, research paper

    An Alternative to Temporary Staffing: Considerations for Workforce Practitioners

    Get PDF
    The temporary staffing industry has become a fixture of the US economy in recent decades, and workforce practitioners are increasingly noting the prevalence of temporary jobs in the low-skilled labor market. To ensure that these jobs are a stepping stone for job seekers -- and to tap into additional sources of revenue -- a growing number of social service organizations have launched their own staffing businesses, known as alternative staffing organizations (ASOs)

    In-the-Gap SU UMa-Type Dwarf Nova, Var73 Dra with a Supercycle of about 60 Days

    Full text link
    An intensive photometric-observation campaign of the recently discovered SU UMa-type dwarf nova, Var73 Dra was conducted from 2002 August to 2003 February. We caught three superoutbursts in 2002 October, December and 2003 February. The recurrence cycle of the superoutburst (supercycle) is indicated to be \sim60 d, the shortest among the values known so far in SU UMa stars and close to those of ER UMa stars. The superhump periods measured during the first two superoutbursts were 0.104885(93) d, and 0.10623(16) d, respectively. A 0.10424(3)-d periodicity was detected in quiescence. The change rate of the superhump period during the second superoutburst was 1.7×1031.7\times10^{-3}, which is an order of magnitude larger than the largest value ever known. Outburst activity has changed from a phase of frequent normal outbursts and infrequent superoutbursts in 2001 to a phase of infrequent normal outbursts and frequent superoutbursts in 2002. Our observations are negative to an idea that this star is an related object to ER UMa stars in terms of the duty cycle of the superoutburst and the recurrence cycle of the normal outburst. However, to trace the superhump evolution throughout a superoutburst, and from quiescence more effectively, may give a fruitful result on this matter.Comment: 9 pages, 8 figures, submitted to A&

    A Theoretical Light-Curve Model for the 1999 Outburst of U Scorpii

    Get PDF
    A theoretical light curve for the 1999 outburst of U Scorpii is presented in order to obtain various physical parameters of the recurrent nova. Our U Sco model consists of a very massive white dwarf (WD) with an accretion disk and a lobe-filling, slightly evolved, main-sequence star (MS). The model includes a reflection effect by the companion and the accretion disk together with a shadowing effect on the companion by the accretion disk. The early visual light curve (t ~ 1-15 days after maximum) is well reproduced by a thermonuclear runaway model on a very massive WD close to the Chandrasekhar limit (M_{WD}= 1.37 \pm 0.01 M_\odot), in which optically thick winds blowing from the WD play a key role in determining the nova duration. The duration of the strong wind phase (t~0-17 days) is very consistent with the BeppoSAX supersoft X-ray detection at t~19-20 days because supersoft X-rays are self-absorbed by the massive wind. The envelope mass at the peak is estimated to be ~3x10^{-6} M_\odot, which is indicating an average mass accretion rate ~2.5x10^{-7} M_\odot yr^{-1} during the quiescent phase between 1987 and 1999. These quantities are exactly the same as those predicted in a new progenitor model of Type Ia supernovae.Comment: 7 pages, 3 figures, to appear in ApJL, vol. 52
    corecore