616 research outputs found
Homogeneous Nucleation Rate for Water
Homogeneous nucleation rate data for water extending over an exceptionally large domain of rate (J), supersaturation ratio (S), and temperature (T) was recently published. Because it spans a large J-S-T surface, this data constitutes a good test of nucleation theory. Here classical nucleation theory is used to analyze this data. By adjusting only the sticking coefficient, we are able to obtain a good fit between theory and experiment. It was necessary to include an increase in the water molecular density associated with the finite water compressibility
Pattern formation in directional solidification under shear flow. I: Linear stability analysis and basic patterns
An asymptotic interface equation for directional solidification near the
absolute stabiliy limit is extended by a nonlocal term describing a shear flow
parallel to the interface. In the long-wave limit considered, the flow acts
destabilizing on a planar interface. Moreover, linear stability analysis
suggests that the morphology diagram is modified by the flow near the onset of
the Mullins-Sekerka instability. Via numerical analysis, the bifurcation
structure of the system is shown to change. Besides the known hexagonal cells,
structures consisting of stripes arise. Due to its symmetry-breaking
properties, the flow term induces a lateral drift of the whole pattern, once
the instability has become active. The drift velocity is measured numerically
and described analytically in the framework of a linear analysis. At large flow
strength, the linear description breaks down, which is accompanied by a
transition to flow-dominated morphologies, described in a companion paper.
Small and intermediate flows lead to increased order in the lattice structure
of the pattern, facilitating the elimination of defects. Locally oscillating
structures appear closer to the instability threshold with flow than without.Comment: 20 pages, Latex, accepted for Physical Review
Study of Prenucleation Ion Clusters: Correlation between Ion Mobility Spectra and Size Distributions
Additional studies regarding our earlier electrothermodynamic theory are presented. Comparisons to recent expansion cloud chamber ion mobility measurements are made, indicating general agreement with observations. This theory predicts more stable and ordered structure for prenucleation ion-water cluster systems than accounted for by the classical Thomson\u27s theory. In the limiting case of the dielectric constant ε = 1, our monopole electrostatic energy term contributed by the foreign ion center precisely converges to that of Thomson. Predicted ion cluster size distributions are found to correlate well with ion cluster size spectra obtained from the ion mobility measurements of hydrated ion clusters and Champman-Enskog theory. In view of good correlation between the theory and observation, we believe that ion mobility study at sufficiently low electric field is a powerful tool for studying prenucleation dynamics
Homogeneous Nucleation Rate Measurements for Water Over a Wide Range of Temperature and Nucleation Rate
An expansion cloud chamber was used to measure the homogeneous nucleation rate for water over a wide range of temperature from 230-290 K and nucleation rates of 1-106 drops cm-3 s-1. The comprehensive and extensive nature of this data allows a much more detailed comparison between theory and experiment than has previously been possible. The expansion chamber technique employs continuous pressure measurement and an adiabatic pulse of supersaturation to give the time history of supersaturation and temperature during the nucleation. The resulting drop concentration is determined using photographic techniques. The experimental observations are presented in tabular form and from them an empirical nucleation rate formula is determined: J=S2 exp[328.124-5.582 43T+0.030 365T2-5. 0319E-5T3-(999.814-4.100 87T+3.010 84E-3 T2)ln -2S], where J is the nucleation rate in units of drops cm -1 s-1 is the supersaturation ratio and T is the temperature in K
What are the interactions in quantum glasses?
The form of the low-temperature interactions between defects in neutral
glasses is reconsidered. We analyse the case where the defects can be modelled
either as simple 2-level tunneling systems, or tunneling rotational impurities.
The coupling to strain fields is determined up to 2nd order in the displacement
field. It is shown that the linear coupling generates not only the usual
Ising-like interaction between the rotational tunneling defect modes,
which cause them to freeze around a temperature , but also a random field
term. At lower temperatures the inversion symmetric tunneling modes are still
active - however the coupling of these to the frozen rotational modes, now via
the 2nd-order coupling to phonons, generates another random field term acting
on the inversion symmetric modes (as well as shorter-range interactions
between them). Detailed expressions for all these couplings are given.Comment: 12 pages, 2 figures. Minor modifications, published versio
Extending the scope of microscopic solvability: Combination of the Kruskal-Segur method with Zauderer decomposition
Successful applications of the Kruskal-Segur approach to interfacial pattern
formation have remained limited due to the necessity of an integral formulation
of the problem. This excludes nonlinear bulk equations, rendering convection
intractable. Combining the method with Zauderer's asymptotic decomposition
scheme, we are able to strongly extend its scope of applicability and solve
selection problems based on free boundary formulations in terms of partial
differential equations alone. To demonstrate the technique, we give the first
analytic solution of the problem of velocity selection for dendritic growth in
a forced potential flow.Comment: Submitted to Europhys. Letters, No figures, 5 page
Influence of external flows on crystal growth: numerical investigation
We use a combined phase-field/lattice-Boltzmann scheme [D. Medvedev, K.
Kassner, Phys. Rev. E {\bf 72}, 056703 (2005)] to simulate non-facetted crystal
growth from an undercooled melt in external flows. Selected growth parameters
are determined numerically.
For growth patterns at moderate to high undercooling and relatively large
anisotropy, the values of the tip radius and selection parameter plotted as a
function of the Peclet number fall approximately on single curves. Hence, it
may be argued that a parallel flow changes the selected tip radius and growth
velocity solely by modifying (increasing) the Peclet number. This has
interesting implications for the availability of current selection theories as
predictors of growth characteristics under flow.
At smaller anisotropy, a modification of the morphology diagram in the plane
undercooling versus anisotropy is observed. The transition line from dendrites
to doublons is shifted in favour of dendritic patterns, which become faster
than doublons as the flow speed is increased, thus rendering the basin of
attraction of dendritic structures larger.
For small anisotropy and Prandtl number, we find oscillations of the tip
velocity in the presence of flow. On increasing the fluid viscosity or
decreasing the flow velocity, we observe a reduction in the amplitude of these
oscillations.Comment: 10 pages, 7 figures, accepted for Physical Review E; size of some
images had to be substantially reduced in comparison to original, resulting
in low qualit
Integrated atomic quantum technologies in demanding environments: Development and qualification of miniaturized optical setups and integration technologies for UHV and space operation
Employing compact quantum sensors in field or in space (e.g., small satellites) implies demanding requirements on components and integration technologies. Within our work on integrated sensors, we develop miniaturized, ultra-stable optical setups for optical cooling and trapping of cold atomic gases. Besides challenging demands on alignment precision, and thermo-mechanical durability, we specifically address ultra-high vacuum (UHV) compatibility of our integration technologies and optical components. A prototype design of an UHV-compatible, crossed beam optical dipole trap setup and its application within a cold atomic quantum sensor is described. First qualification efforts on adhesive micro-integration technologies are presented. These tests are conducted in application-relevant geometries and material combinations common for micro-integrated optical setups. Adhesive aging will be investigated by thermal cycling or gamma radiation exposure. For vacuum compatibility testing, a versatile UHV testing system is currently being set up, enabling residual gas analysis and measurement of total gas rates down to 5•10-10mbar l/s at a base pressure of 10-11 mbar, exceeding the common ASTM E595 test
- …