5,994 research outputs found
Operational approach to the Uhlmann holonomy
We suggest a physical interpretation of the Uhlmann amplitude of a density
operator. Given this interpretation we propose an operational approach to
obtain the Uhlmann condition for parallelity. This allows us to realize
parallel transport along a sequence of density operators by an iterative
preparation procedure. At the final step the resulting Uhlmann holonomy can be
determined via interferometric measurements.Comment: Added material, references, and journal reference
Structural relaxation in a system of dumbbell molecules
The interaction-site-density-fluctuation correlators, the dipole-relaxation
functions, and the mean-squared displacements of a system of symmetric
dumbbells of fused hard spheres are calculated for two representative
elongations of the molecules within the mode-coupling theory for the evolution
of glassy dynamics. For large elongations, universal relaxation laws for states
near the glass transition are valid for parameters and time intervals similar
to the ones found for the hard-sphere system. Rotation-translation coupling
leads to an enlarged crossover interval for the mean-squared displacement of
the constituent atoms between the end of the von Schweidler regime and the
beginning of the diffusion process. For small elongations, the superposition
principle for the reorientational -process is violated for parameters
and time intervals of interest for data analysis, and there is a strong
breaking of the coupling of the -relaxation scale for the diffusion
process with that for representative density fluctuations and for dipole
reorientations.Comment: 15 pages, 14 figures, Phys. Rev. E in pres
Gaussian density fluctuations and Mode Coupling Theory for supercooled liquids
The equations of motion for the density modes of a fluid, derived from
Newton's equations, are written as a linear generalized Langevin equation. The
constraint imposed by the fluctuation-dissipation theorem is used to derive an
exact form for the memory function. The resulting equations, solved under the
assumption that the noise, and consequently density fluctuations, of the liquid
are gaussian distributed, are equivalent to the random-phase-approximation for
the static structure factor and to the well known ideal mode coupling theory
(MCT) equations for the dynamics. This finding suggests that MCT is the
canonical mean-field theory of the fluid dynamics.Comment: 4 pages, REVTE
Temperature and Safety Profiles of Needle-Warming Techniques in Acupuncture and Moxibustion
The needle-warming technique combines acupuncture and moxibustion, and it is commonly practised in China to relieve pain conditions. However, burning of moxa has many disadvantages. This study examined the temperature and safety profiles of such technique. First, skin temperature changes during needle-warming were examined in anesthetized animals to determine the safe distance for needle-warming moxibustion in human subjects. Then, the practical distance for needle-warming in human subjects were verified. Finally, the temperature profiles of the needle during needle-warming moxibustion were examined using an infrared camera. Our results show that during needle-warming moxibustion there is little heat being conducted into deep tissue via the shaft of the needle, and that the effective heating time to the acupoint is rather short compared to the period of moxibustion. These findings suggest that the needle-warming technique is an inefficient way of acupoint thermal stimulation and should be modified and improved using new technologies
Endoscopic Assessment of the Duodenum in Dogs with Inflammatory Bowel Disease
Background: Endoscopy is performed for direct inspection of the mucosa and acquisition of biopsies in dogs with inflammatory bowel disease (IBD). Aim: To evaluate the interobserver agreement in the endoscopic assessment of duodenal mucosa in dogs with IBD. Methods: Thirty-five archived endoscopic images of grossly normal (n = 6) and inflamed (n = 29) duodenal mucosa were displayed to 3 expert and 5 trainee endoscopists. Each image was assessed independently by endoscopists for mucosal abnormalities using established indices (of hyperemia, granularity, friability, lymphatic dilatation, and erosions) or interpreted as normal mucosa (trial 1). A repeated trial (trial 2) was performed with the same images presented in random order 1 month later, and accompanied by a visual template. Results: There was slight interobserver agreement in initial mucosal assessment for expert and trainee endoscopists in trial 1 (kappa ≤ 0.02, P \u3e .05). Interobserver agreement improved in trial 2 for both expert and trainee endoscopists (kappa = 0.2, P \u3e .05) for experts and (P \u3c .05) for trainees. There was a significant (P \u3c .01) improvement in trainee endoscopy scores of lesions from trial 1 to trial 2. Regression analysis showed a significant (P \u3c .01) difference between expert versus trainee endoscopy scores in trial 1. Repeat lesion assessment aided by use of a visual template (trial 2) improved the overall scores of trainee endoscopists to near that of expert endoscopists (P = .06). Conclusions and Clinical Importance: Interobserver agreement of IBD mucosal appearance from endoscopic findings benefitted from operator experience
Stochastic dynamics of model proteins on a directed graph
A method for reconstructing the energy landscape of simple polypeptidic
chains is described. We show that we can construct an equivalent representation
of the energy landscape by a suitable directed graph. Its topological and
dynamical features are shown to yield an effective estimate of the time scales
associated with the folding and with the equilibration processes. This
conclusion is drawn by comparing molecular dynamics simulations at constant
temperature with the dynamics on the graph, defined by a temperature dependent
Markov process. The main advantage of the graph representation is that its
dynamics can be naturally renormalized by collecting nodes into "hubs", while
redefining their connectivity. We show that both topological and dynamical
properties are preserved by the renormalization procedure. Moreover, we obtain
clear indications that the heteropolymers exhibit common topological
properties, at variance with the homopolymer, whose peculiar graph structure
stems from its spatial homogeneity. In order to obtain a clear distinction
between a "fast folder" and a "slow folder" in the heteropolymers one has to
look at kinetic features of the directed graph. We find that the average time
needed to the fast folder for reaching its native configuration is two orders
of magnitude smaller than its equilibration time, while for the bad folder
these time scales are comparable. Accordingly, we can conclude that the
strategy described in this paper can be successfully applied also to more
realistic models, by studying their renormalized dynamics on the directed
graph, rather than performing lengthy molecular dynamics simulations.Comment: 15 pages, 12 figure
A mode-coupling theory for the glassy dynamics of a diatomic probe molecule immersed in a simple liquid
Generalizing the mode-coupling theory for ideal liquid-glass transitions,
equations of motion are derived for the correlation functions describing the
glassy dynamics of a diatomic probe molecule immersed in a simple glass-forming
system. The molecule is described in the interaction-site representation and
the equations are solved for a dumbbell molecule consisting of two fused hard
spheres in a hard-sphere system. The results for the molecule's arrested
position in the glass state and the reorientational correlators for
angular-momentum index and near the glass transition are
compared with those obtained previously within a theory based on a
tensor-density description of the molecule in order to demonstrate that the two
approaches yield equivalent results. For strongly hindered reorientational
motion, the dipole-relaxation spectra for the -process can be mapped on
the dielectric-loss spectra of glycerol if a rescaling is performed according
to a suggestion by Dixon et al. [Phys. Rev. Lett. {\bf 65}, 1108 (1990)]. It is
demonstrated that the glassy dynamics is independent of the molecule's inertia
parameters.Comment: 19 pages, 10 figures, Phys. Rev. E, in prin
Maternal Dietary Patterns and Gestational Diabetes Mellitus in a Multi-Ethnic Asian Cohort: The GUSTO Study
10.3390/nu8090574Nutrients89article no. 574GUSTO (Growing up towards Healthy Outcomes
Development of FRET-Based Assays in the Far-Red Using CdTe Quantum Dots
Colloidal quantum dots (QDs) are now commercially available in a biofunctionalized form, and Förster resonance energy transfer (FRET) between bioconjugated dots and fluorophores within the visible range has been observed. We are particularly interested in the far-red region, as from a biological perspective there are benefits in pushing to ∼700 nm to minimize optical absorption (ABS) within tissue and to avoid cell autofluorescence. We report on FRET between streptavidin- (STV-) conjugated CdTe quantum dots, Qdot705-STV, with biotinylated DY731-Bio fluorophores in a donor-acceptor assay. We also highlight the changes in DY731-Bio absorptivity during the streptavidin-biotin binding process which can be attributed to the structural reorientation. For fluorescence beyond 700 nm, different alloy compositions are required for the QD core and these changes directly affect the fluorescence decay dynamics producing a marked biexponential decay with a long-lifetime component in excess of 100 nanoseconds. We compare the influence of the two QD relaxation routes upon FRET dynamics in the presence of DY731-Bio
Proteome Profiling of Breast Tumors by Gel Electrophoresis and Nanoscale Electrospray Ionization Mass Spectrometry
We have conducted proteome-wide analysis of fresh surgery specimens derived from breast cancer patients, using an approach that integrates size-based intact protein fractionation, nanoscale liquid separation of peptides, electrospray ion trap mass spectrometry, and bioinformatics. Through this approach, we have acquired a large amount of peptide fragmentation spectra from size-resolved fractions of the proteomes of several breast tumors, tissue peripheral to the tumor, and samples from patients undergoing noncancer surgery. Label-free quantitation was used to generate protein abundance maps for each proteome and perform comparative analyses. The mass spectrometry data revealed distinct qualitative and quantitative patterns distinguishing the tumors from healthy tissue as well as differences between metastatic and non-metastatic human breast cancers including many established and potential novel candidate protein biomarkers. Selected proteins were evaluated by Western blotting using tumors grouped according to histological grade, size, and receptor expression but differing in nodal status. Immunohistochemical analysis of a wide panel of breast tumors was conducted to assess expression in different types of breast cancers and the cellular distribution of the candidate proteins. These experiments provided further insights and an independent validation of the data obtained by mass spectrometry and revealed the potential of this approach for establishing multimodal markers for early metastasis, therapy outcomes, prognosis, and diagnosis in the future. © 2008 American Chemical Society
- …