41 research outputs found

    Adverse maternal, fetal, and newborn outcomes among pregnant women with SARS-CoV-2 infection: an individual participant data meta-analysis.

    Get PDF
    INTRODUCTION Despite a growing body of research on the risks of SARS-CoV-2 infection during pregnancy, there is continued controversy given heterogeneity in the quality and design of published studies. METHODS We screened ongoing studies in our sequential, prospective meta-analysis. We pooled individual participant data to estimate the absolute and relative risk (RR) of adverse outcomes among pregnant women with SARS-CoV-2 infection, compared with confirmed negative pregnancies. We evaluated the risk of bias using a modified Newcastle-Ottawa Scale. RESULTS We screened 137 studies and included 12 studies in 12 countries involving 13 136 pregnant women.Pregnant women with SARS-CoV-2 infection-as compared with uninfected pregnant women-were at significantly increased risk of maternal mortality (10 studies; n=1490; RR 7.68, 95% CI 1.70 to 34.61); admission to intensive care unit (8 studies; n=6660; RR 3.81, 95% CI 2.03 to 7.17); receiving mechanical ventilation (7 studies; n=4887; RR 15.23, 95% CI 4.32 to 53.71); receiving any critical care (7 studies; n=4735; RR 5.48, 95% CI 2.57 to 11.72); and being diagnosed with pneumonia (6 studies; n=4573; RR 23.46, 95% CI 3.03 to 181.39) and thromboembolic disease (8 studies; n=5146; RR 5.50, 95% CI 1.12 to 27.12).Neonates born to women with SARS-CoV-2 infection were more likely to be admitted to a neonatal care unit after birth (7 studies; n=7637; RR 1.86, 95% CI 1.12 to 3.08); be born preterm (7 studies; n=6233; RR 1.71, 95% CI 1.28 to 2.29) or moderately preterm (7 studies; n=6071; RR 2.92, 95% CI 1.88 to 4.54); and to be born low birth weight (12 studies; n=11 930; RR 1.19, 95% CI 1.02 to 1.40). Infection was not linked to stillbirth. Studies were generally at low or moderate risk of bias. CONCLUSIONS This analysis indicates that SARS-CoV-2 infection at any time during pregnancy increases the risk of maternal death, severe maternal morbidities and neonatal morbidity, but not stillbirth or intrauterine growth restriction. As more data become available, we will update these findings per the published protocol

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    New radiometric age of volcanic rocks in the Central Eritrean Plateau (form Asmara to Adi Quala): consideration on stratigraphy and correlation.

    No full text
    New radiometric data have recently been acquired on basalt and rhyolite sampled at various levels of the volcanic sequence occurring in the central Eritrean plateau, confirming the stratigraphic reconstruction suggested in a previous paper [Zanettin, B., Bellieni, G., Justin Visentin, E., Haile, T., 1999. The volcanic rocks of the Eritrean plateau: stratigraphy and evolution. Acta Volcanologica 11(1), 183-193]. New considerations indicate the tholeiitic, not alkaline, nature of the Asmara basalt. Doubts about the relative age of the Aiba/Alaji and Asmara basalts have now been clarified: they are, at least partly, coeval (about 30 Ma old). The Serae rhyolite intercalated in the Adi Ugri basalt turns out to be about 24 Ma old, like the more abundant ignimbrite outcropping in the Senafe area, of which it is the westernmost extension. Its age confirms that it does not correspond to the trachyte intercalated in the Oligocene stratoid basalt of the Adwa-Axum area (where the Adi Ugri basalt probably also occurs, intercalated with the Serae trachyte and rhyolite). The upper part of the Adi Ugri basalt is 22 Ma old (an age consistent with the finding of a Deinotherium tooth). The radiometric age of these rocks also confirms already indicated correlations between Eritrean and Ethiopian volcanic formations

    Stratigraphy and evolution og the trachy-rhyolitic volcanism of the Senafe Area (Eastern Eritrean Plateau).

    No full text
    The Senafe area reveals a pile of stratoid volcanic rocks ("Senafe" ignimbrite), of considerable extent and thickness, which are the products of the first volcanic event which took place in this sector, close to the upper margin of the Afar escarpment. The Senafe ignimbrite is composed prevalently of trachyte with differing degrees of alkalinity: trachy-dacite of transitional series, and trachyte s.s. of mildly alkaline series. K/Ar radiometric measurements carried out on three samples give ages ranging between 21 and 23 Ma (Lower Miocene) and show that the Senafe ignimbrite with transitional character is an extension of the Serae rhyolite of the Central Eritrean Plateau, and may also be correlated with the Miocene Alaji rhyolite of the Central Ethiopian Plateau. In contrast, the more alkaline ignimbrite shows good correlations with the trachyte emitted by the Miocene Termaber alkaline central volcanoes of Ethiopia. It is noted that, in the course of the Miocene volcanism in Eritrea, the volumetric ratio between associated basalt and ignimbrite diminishes from west to east, i.e., approaching the Afar escarpment. The stratoid volcanic rocks are injected by thick trachytic and rhyolitic dykes. As radiometric measurements on them could not be performed, their age is unknown, but it is probably more recent than that of the injected ignimbrite, according to Merla and Minucci [Merla, G., Minucci, E., 1938. Missione geologica nel Tigrai. In: La serie dei terreni, vol. 1. Regia Accademia d'Italia, Centro Studi per l'Africa Orientale Italiana, Rome, Italy, pp. 1-362] for similar dykes and domes occurring in the Adwa-Axum area (Tigrai, Ethiopia), not far from Senafe. A section is devoted to the dyke feeders of the Eritrean and Adwa-Axum volcanism
    corecore