611 research outputs found
The Old Halo metallicity gradient: the trace of a self-enrichment process
Based on a model of globular cluster self-enrichment published in a previous
paper, we present an explanation for the metallicity gradient observed
throughout the galactic Old Halo. Our self-enrichment model is based on the
ability of globular cluster progenitor clouds to retain the ejecta of a first
generation of Type II Supernovae. The key point is that this ability depends on
the pressure exerted on the progenitor cloud by the surrounding protogalactic
medium and therefore on the location of the cloud in the protoGalaxy. Since
there is no significant (if any) metallicity gradient in the whole halo, we
also present a review in favour of a galactic halo partly build via accretions
and mergers of satellite systems. Some of them bear their own globular clusters
and therefore ``contaminate'' the system of globular clusters formed ``in
situ'', namely within the original potential well of the Galaxy. Therefore, the
comparison between our self-enrichment model and the observational data should
be limited to the genuine galactic globular clusters, the so-called Old Halo
group.Comment: 11 pages, 4 figures, accepted for publication in Astronomy and
Astrophysic
TRAPPIST photometry and imaging monitoring of comet C/2013 R1(Lovejoy): Implications for the origin of daughter species
We report the results of the narrow band photometry and imaging monitoring of
comet C/2013 R1 (Lovejoy) with the robotic telescope TRAPPIST (La Silla
observatory). We gathered around 400 images over 8 months pre- and
post-perihelion between September 12, 2013 and July 6, 2014. We followed the
evolution of the OH, NH, CN, C3 , and C2 production rates computed with the
Haser model as well as the evolution of the dust production. All five gas
species display an asymmetry about perihelion, the rate of brightening being
steeper than the rate of fading. The study of the coma morphology reveals gas
and dust jets which indicate one or several active zone(s) on the nucleus. The
dust, C2 , and C3 morphologies present some similarities while the CN
morphology is different. OH and NH are enhanced in the tail direction. The
study of the evolution of the comet activity shows that the OH, NH, and C2
production rates evolution with the heliocentric distance is correlated to the
dust evolution. The CN and, to a lesser extent, the C3 do not display such a
correlation with the dust. These evidences and the comparison with parent
species production rates indicate that C2 and C3 on one side and OH and NH on
the other side could be -at least partially- released from organic-rich grains
and icy grains. On the contrary, all evidences point to HCN being the main
parent of CN in this comet.Comment: Accepted for publication in Astronomy & Astrophysics, 10 page
The self-enrichment of galactic halo globular clusters : a clue to their formation ?
We present a model of globular cluster self-enrichment. In the protogalaxy,
cold and dense clouds embedded in the hot protogalactic medium are assumed to
be the progenitors of galactic halo globular clusters. The massive stars of a
first generation of metal-free stars, born in the central areas of the
proto-globular cluster clouds, explode as Type II supernovae. The associated
blast waves trigger the expansion of a supershell, sweeping all the material of
the cloud, and the heavy elements released by these massive stars enrich the
supershell. A second generation of stars is born in these compressed and
enriched layers of gas. These stars can recollapse and form a globular cluster.
This work aims at revising the most often encountered argument against
self-enrichment, namely the presumed ability of a small number of supernovae to
disrupt a proto-globular cluster cloud. We describe a model of the dynamics of
the supershell and of its progressive chemical enrichment. We show that the
minimal mass of the primordial cluster cloud required to avoid disruption by
several tens of Type II supernovae is compatible with the masses usually
assumed for proto-globular cluster clouds. Furthermore, the corresponding
self-enrichment level is in agreement with halo globular cluster metallicities.Comment: 12 pages, 7 figures. Accepted for publication in Astronomy and
Astrophysic
ISM studies of GRB 030329 with high resolution spectroscopy
We present a series of early UVES/VLT high resolution spectra of the
afterglow of GRB 030329 at redshift z=0.16867+-0.00001. In contrast to other
spectra from this burst, both emission and absorption lines were detected. None
of them showed any temporal evolution. From the emission lines, we determine
the properties of the host galaxy which has a star formation rate (SFR) of
0.198 M_solar yr^-1 and a low metallicity of 1/7 Z_solar. Given the low total
stellar host mass M_star=10^7.75+-0.15 M_solar and an absolute luminosity
m_V=-16.37, we derive specific SFRs (SSFR) of log SFR/M = -8.5 yr^-1 and SFR/L
= 14.1 M_solar yr^-1 L_*^-1. This fits well into the picture of GRB hosts as
being low mass, low metallicity, actively star forming galaxies. The MgII and
MgI absorption lines from the host show multiple narrow (Doppler width b=5-10
km/s) components spanning a range of v about 260 km/s, mainly blueshifted
compared to the redshift from the emission lines. These components are likely
probing outflowing material of the host galaxy, which could arise from former
galactic superwinds, driven by supernovae from star forming regions. Similar
features have been observed in QSO spectra. The outflowing material is mainly
neutral with high column densities of log N(MgII)=14.0+-0.1 cm^-2 and log
N(MgI)=12.3+-0.1 cm^-2.Comment: 11 pages, 4 figures, submitted to Ap
A photometric study of the hot exoplanet WASP-19b
Context: When the planet transits its host star, it is possible to measure
the planetary radius and (with radial velocity data) the planet mass. For the
study of planetary atmospheres, it is essential to obtain transit and
occultation measurements at multiple wavelengths.
Aims: We aim to characterize the transiting hot Jupiter WASP-19b by deriving
accurate and precise planetary parameters from a dedicated observing campaign
of transits and occultations.
Methods: We have obtained a total of 14 transit lightcurves in the r'-Gunn,
IC, z'-Gunn and I+z' filters and 10 occultation lightcurves in z'-Gunn using
EulerCam on the Euler-Swiss telescope and TRAPPIST. We have also obtained one
lightcurve through the narrow-band NB1190 filter of HAWK-I on the VLT measuring
an occultation at 1.19 micron. We have performed a global MCMC analysis of all
new data together with some archive data in order to refine the planetary
parameters and measure the occultation depths in z'-band and at 1.19 micron.
Results: We measure a planetary radius of R_p = 1.376 (+/-0.046) R_j, a
planetary mass of M_p = 1.165 (+/-0.068) M_j, and find a very low eccentricity
of e = 0.0077 (+/-0.0068), compatible with a circular orbit. We have detected
the z'-band occultation at 3 sigma significance and measure it to be dF_z'= 352
(+/-116) ppm, more than a factor of 2 smaller than previously published. The
occultation at 1.19 micron is only marginally constrained at dF_1190 = 1711
(+/-745) ppm.
Conclusions: We have shown that the detection of occultations in the visible
is within reach even for 1m class telescopes if a considerable number of
individual events are observed. Our results suggest an oxygen-dominated
atmosphere of WASP-19b, making the planet an interesting test case for
oxygen-rich planets without temperature inversion.Comment: Published in Astronomy & Astrophysics. 11 pages, 11 figures, 4 table
s/alpha/Fe Abundance Ratios in Halo Field Stars: Is there a Globular Cluster Connection?
We try to understand the s- and r-process elements vs Ti/Fe plots derived by
Jehin et al. (1999) for mildly metal-poor stars within the framework of the
analytical semi-empirical models for these elements by Pagel & Tautvaisiene
(1995, 1997). Jehin et al. distinguished two Pop II subgroups: IIa with
alpha/Fe and s-elements/Fe increasing together, which they attribute to pure
SNII activity, and IIb with constant alpha/Fe and a range in s/Fe which they
attribute to a prolonged accretion phase in parent globular clusters. However,
their sample consists mainly of thick-disk stars with only 4 clear halo
members, of which two are `anomalous' in the sense defined by Nissen & Schuster
(1997). Only the remaining two halo stars (and one in Nissen & Schuster's
sample) depart significantly from Y/Ti (or s/alpha) ratios predicted by our
model.Comment: 6 pages, 5 figures To appear in: Roma-Trieste Workshop 1999: `The
Chemical Evolution of the Milky Way: Stars vs Clusters', Vulcano Sept. 1999.
F. Giovanelli & F. Matteucci (eds), Kluwer, Dordrech
TRAPPIST: a robotic telescope dedicated to the study of planetary systems
We present here a new robotic telescope called TRAPPIST (TRAnsiting Planets
and PlanetesImals Small Telescope). Equipped with a high-quality CCD camera
mounted on a 0.6 meter light weight optical tube, TRAPPIST has been installed
in April 2010 at the ESO La Silla Observatory (Chile), and is now beginning its
scientific program. The science goal of TRAPPIST is the study of planetary
systems through two approaches: the detection and study of exoplanets, and the
study of comets. We describe here the objectives of the project, the hardware,
and we present some of the first results obtained during the commissioning
phase.Comment: To appear in Detection and Dynamics of Transiting Exoplanets,
Proceedings of Haute Provence Observatory Colloquium (23-27 August 2010),
eds. F. Bouchy, R.F. Diaz & C.Moutou, Platypus press 201
Forbidden oxygen lines at various nucleocentric distances in comets
To study the formation of the [OI] lines - i.e., 5577 A (the green line),
6300 A and 6364 A (the two red lines) - in the coma of comets and to determine
the parent species of the oxygen atoms using the green to red-doublet emission
intensity ratio (G/R ratio) and the lines velocity widths. We acquired at the
ESO VLT high-resolution spectroscopic observations of comets C/2002 T7
(LINEAR), 73P-C/Schwassmann-Wachmann 3, 8P/Tuttle, and, 103P/Hartley 2 when
they were close to the Earth (< 0.6 au). Using the observed spectra, we
determined the intensities and the widths of the three [OI] lines. We have
spatially extracted the spectra in order to achieve the best possible
resolution of about 1-2", i.e., nucleocentric projected distances of 100 to 400
km depending on the geocentric distance of the comet. We have decontaminated
the [OI] green line from C2 lines blends. It is found that the observed G/R
ratio on all four comets varies as a function of nucleocentric projected
distance. This is mainly due to the collisional quenching of O(1S) and O(1D) by
water molecules in the inner coma. The observed green emission line width is
about 2.5 km/s and decreases as the distance from the nucleus increases which
can be explained by the varying contribution of CO2 to the O(1S) production in
the innermost coma. The photodissociation of CO2 molecules seems to produce
O(1S) closer to the nucleus while the water molecule forms all the O(1S) and
O(1D) atoms beyond 1000 km. Thus we conclude that the main parent species
producing O(1S) and O(1D) in the inner coma is not always the same. The
observations have been interpreted in the framework of the
coupled-chemistry-emission model of Bhardwaj & Raghuram (2012) and the upper
limits of CO2 relative abundances are derived from the observed G/R ratios.
Measuring the [OI] lines could indeed provide a new way to determine the CO2
relative abundance in comets.Comment: accepted for publication in A&A, the abstract is shortene
Ground-based monitoring of comet 67P/Churyumov-Gerasimenko gas activity throughout the <i>Rosetta</i> mission
Simultaneously to the ESA Rosetta mission, a world-wide ground-based campaign provided measurements of the large scale activity of comet 67P/Churyumov-Gerasimenko through measurement of optically active gas species and imaging of the overall dust coma. We present more than two years of observations performed with the FORS2 low resolution spectrograph at the VLT, TRAPPIST, and ACAM at the WHT. We focus on the evolution of the CN production, as a tracer of the comet activity. We find that it is asymmetric with respect to perihelion and different from that of the dust. The CN emission is detected for the first time at 1.34 au pre-perihelion and production rates then increase steeply to peak about two weeks after perihelion at (1.00±0.10) ×1025 molecules s−1, while the post-perihelion decrease is more shallow. The evolution of the comet activity is strongly influenced by seasonal effects, with enhanced CN production when the Southern hemisphere is illuminated
- …