486 research outputs found

    Development of a dedicated 3D printed myocardial perfusion phantom:proof-of-concept in dynamic SPECT

    Get PDF
    We aim to facilitate phantom-based (ground truth) evaluation of dynamic, quantitative myocardial perfusion imaging (MPI) applications. Current MPI phantoms are static representations or lack clinical hard- and software evaluation capabilities. This proof-of-concept study demonstrates the design, realisation and testing of a dedicated cardiac flow phantom. The 3D printed phantom mimics flow through a left ventricular cavity (LVC) and three myocardial segments. In the accompanying fluid circuit, tap water is pumped through the LVC and thereafter partially directed to the segments using adjustable resistances. Regulation hereof mimics perfusion deficit, whereby flow sensors serve as reference standard. Seven phantom measurements were performed while varying injected activity of 99mTc-tetrofosmin (330–550 MBq), cardiac output (1.5–3.0 L/min) and myocardial segmental flows (50–150 mL/min). Image data from dynamic single photon emission computed tomography was analysed with clinical software. Derived time activity curves were reproducible, showing logical trends regarding selected input variables. A promising correlation was found between software computed myocardial flows and its reference (ρ= − 0.98; p = 0.003). This proof-of-concept paper demonstrates we have successfully measured first-pass LV flow and myocardial perfusion in SPECT-MPI using a novel, dedicated, myocardial perfusion phantom. Graphical abstract: This proof-of-concept study focuses on the development of a novel, dedicated myocardial perfusion phantom, ultimately aiming to contribute to the evaluation of quantitative myocardial perfusion imaging applications. [Figure not available: see fulltext.

    Genetic imprint of vaccination on simian/human immunodeficiency virus type 1 transmitted viral genomes in rhesus macaques.

    Get PDF
    Understanding the genetic, antigenic and structural changes that occur during HIV-1 infection in response to pre-existing immunity will facilitate current efforts to develop an HIV-1 vaccine. Much is known about HIV-1 variation at the population level but little with regard to specific changes occurring in the envelope glycoprotein within a host in response to immune pressure elicited by antibodies. The aim of this study was to track and map specific early genetic changes occurring in the viral envelope gene following vaccination using a highly controlled viral challenge setting in the SHIV macaque model. We generated 449 full-length env sequences from vaccinees, and 63 from the virus inoculum. Analysis revealed a different pattern in the distribution and frequency of mutations in the regions of the envelope gene targeted by the vaccine as well as different patterns of diversification between animals in the naïve control group and vaccinees. Given the high stringency of the model it is remarkable that we were able to identify genetic changes associated with the vaccination. This work provides insight into the characterization of breakthrough viral populations in less than fully efficacious vaccines and illustrates the value of HIV-1 Env SHIV challenge model in macaques to unravel the mechanisms driving HIV-1 envelope genetic diversity in the presence of vaccine induced-responses.Evolutionary analysis was supported by a Wellcome Intermediate Clinical Fellowship while the animal work by National Institutes of Health (NIH) grant 1P01AI06628. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Development of a dynamic myocardial perfusion phantom model for tracer kinetic measurements

    Get PDF
    BACKGROUND: Absolute myocardial perfusion imaging (MPI) is beneficial in the diagnosis and prognosis of patients with suspected or known coronary artery disease. However, validation and standardization of perfusion estimates across centers is needed to ensure safe and adequate integration into the clinical workflow. Physical myocardial perfusion models can contribute to this clinical need as these can provide ground-truth validation of perfusion estimates in a simplified, though controlled setup. This work presents the design and realization of such a myocardial perfusion phantom and highlights initial performance testing of the overall phantom setup using dynamic single photon emission computed tomography. RESULTS: Due to anatomical and (patho-)physiological representation in the 3D printed myocardial perfusion phantom, we were able to acquire 22 dynamic MPI datasets in which 99mTc-labelled tracer kinetics was measured and analyzed using clinical MPI software. After phantom setup optimization, time activity curve analysis was executed for measurements with normal myocardial perfusion settings (1.5 mL/g/min) and with settings containing a regional or global perfusion deficit (0.8 mL/g/min). In these measurements, a specific amount of activated carbon was used to adsorb radiotracer in the simulated myocardial tissue. Such mimicking of myocardial tracer uptake and retention over time satisfactorily matched patient tracer kinetics. For normal perfusion levels, the absolute mean error between computed myocardial blood flow and ground-truth flow settings ranged between 0.1 and 0.4 mL/g/min. CONCLUSION: The presented myocardial perfusion phantom is a first step toward ground-truth validation of multimodal, absolute MPI applications in the clinical setting. Its dedicated and 3D printed design enables tracer kinetic measurement, including time activity curve and potentially compartmental myocardial blood flow analysis

    Consumption of a recommended serving of wheat bran cereals significantly increases human faecal butyrate levels in healthy volunteers and reduces markers of inflammation ex vivo.

    Get PDF
    Wheat bran cereals are an important source of dietary fibre. The aim of the study was to investigate if a high intake (120 g) of fibre rich breakfast cereal (which delivers the UK Government guidelines for fibre intake in one serving but is three-fold higher than the manufacturers recommended serving) has additional potential health benefits compared to the recommended serving (40 g, containing 11 g of dietary fibre). To assess this, the study determined the short chain fatty acid (SCFA) profiles in human faecal, urine and plasma samples after consumption of two different servings of fibre-rich cereal. Inhibition of prostanoid production was measured (ex vivo) in human colonic fibroblast cells after cytokine (IL-1β) inflammation stimulation. Eight healthy volunteers, 18-55 years old; BMI (18-30 kg/m2) consumed the wheat bran-rich "ready to eat cereal", at both the high (120 g) serving and recommended (40 g) serving. Faecal, urine and plasma samples were collected at baseline, throughout the five-hour intervention period and approximately 24 hours following consumption. Faecal butyrate showed the largest increase (p < 0.05) of more than a two-fold change following the consumption of the recommended serving of wheat bran cereal (from 13.95 ± 9.17 to 31.63 ± 20.53 mM) and no significant change following the higher serving (from 21.96 ± 11.03 to 22.9 ± 12.69 mM). ANOVA analysis also found a weak serving effect (p = 0.046) of the portion size (high vs. recommended) only for butyrate in urine 24 hours after consumption of the bran cereal. The physiological nutritionally relevant concentrations of faecal SCFAs, as determined in the volunteers' faecal samples showed significant anti-inflammatory activity or the individual faecal SCFAs; acetate (p < 0.001), propionate (p < 0.001) and butyrate (p < 0.01), as well as in combination. Plasma folate was also increased after consumption of both wheat bran servings and was significant (p = 0.037) at the three-hour time point following consumption of the high wheat bran serving. The consumption of the recommended serving (40 g) of wheat bran cereal increased the total microbial SCFAs levels (from 96.88 to 136.96 mM) compared to the higher serving (120 g) (from 110.5 to 117.64 mM) suggesting that the intake of the higher portion size is likely to promote a faecal bulking effect and thereby decrease colonic SCFA levels. These data indicate that consumption of the recommended serving of wheat bran cereal serving would therefore be sufficient to promote microbial butyrate formation, reduce colonic inflammation and increase plasma folate levels in humans

    The role of the chemokine receptor CXCR4 in infection with feline immunodeficiency virus

    Get PDF
    Infection with feline immunodeficiency virus (FIV) leads to the development of a disease state similar to AIDS in man. Recent studies have identified the chemokine receptor CXCR4 as the major receptor for cell culture-adapted strains of FIV, suggesting that FIV and human immunodeficiency virus (HIV) share a common mechanism of infection involving an interaction between the virus and a member of the seven transmembrane domain superfamily of molecules. This article reviews the evidence for the involvement of chemokine receptors in FIV infection and contrasts these findings with similar studies on the primate lentiviruses HIV and SIV (simian immunodeficiency virus)

    Testing the paradox of enrichment along a land use gradient in a multitrophic aboveground and belowground community

    Get PDF
    In the light of ongoing land use changes, it is important to understand how multitrophic communities perform at different land use intensities. The paradox of enrichment predicts that fertilization leads to destabilization and extinction of predator-prey systems. We tested this prediction for a land use intensity gradient from natural to highly fertilized agricultural ecosystems. We included multiple aboveground and belowground trophic levels and land use-dependent searching efficiencies of insects. To overcome logistic constraints of field experiments, we used a successfully validated simulation model to investigate plant responses to removal of herbivores and their enemies. Consistent with our predictions, instability measured by herbivore-induced plant mortality increased with increasing land use intensity. Simultaneously, the balance between herbivores and natural enemies turned increasingly towards herbivore dominance and natural enemy failure. Under natural conditions, there were more frequently significant effects of belowground herbivores and their natural enemies on plant performance, whereas there were more aboveground effects in agroecosystems. This result was partly due to the “boom-bust” behavior of the shoot herbivore population. Plant responses to herbivore or natural enemy removal were much more abrupt than the imposed smooth land use intensity gradient. This may be due to the presence of multiple trophic levels aboveground and belowground. Our model suggests that destabilization and extinction are more likely to occur in agroecosystems than in natural communities, but the shape of the relationship is nonlinear under the influence of multiple trophic interactions.

    Genetic diversity of Brazilian isolates of feline immunodeficiency virus

    Get PDF
    We isolated Feline immunodeficiency virus (FIV) from three adult domestic cats, originating from two open shelters in Brazil. Viruses were isolated from PBMC following co-cultivation with the feline T-lymphoblastoid cell line MYA-1. All amplified env gene products were cloned directly into pGL8MYA. The nucleic acid sequences of seven clones were determined and then compared with those of previously described isolates. The sequences of all of the Brazilian virus clones were distinct and phylogenetic analysis revealed that all belong to subtype B. Three variants isolated from one cat and two variants were isolated from each of the two other cats, indicating that intrahost diversity has the potential to pose problems for the treatment and diagnosis of FIV infection
    corecore