6,774 research outputs found

    Low energy effective gravitational equations on a Gauss-Bonnet brane

    Get PDF
    We present effective gravitational equations at low energies in a Z2Z_2-symmetric braneworld with the Gauss-Bonnet term. Our derivation is based on the geometrical projection approach, and we solve iteratively the bulk geometry using the gradient expansion scheme. Although the original field equations are quite complicated due to the presence of the Gauss-Bonnet term, our final result clearly has the form of the Einstein equations plus correction terms, which is simple enough to handle. As an application, we consider homogeneous and isotropic cosmology on the brane. We also comment on the holographic interpretation of bulk gravity in the Gauss-Bonnet braneworld.Comment: 10 pages, v2: minor clarification

    `Mass without mass' from thin shells in Gauss-Bonnet gravity

    Get PDF
    Five tensor equations are obtained for a thin shell in Gauss-Bonnet gravity. There is the well known junction condition for the singular part of the stress tensor intrinsic to the shell, which we also prove to be well defined. There are also equations relating the geometry of the shell (jump and average of the extrinsic curvature as well as the intrinsic curvature) to the non-singular components of the bulk stress tensor on the sides of the thin shell. The equations are applied to spherically symmetric thin shells in vacuum. The shells are part of the vacuum, they carry no energy tensor. We classify these solutions of `thin shells of nothingness' in the pure Gauss-Bonnet theory. There are three types of solutions, with one, zero or two asymptotic regions respectively. The third kind of solution are wormholes. Although vacuum solutions, they have the appearance of mass in the asymptotic regions. It is striking that in this theory, exotic matter is not needed in order for wormholes to exist- they can exist even with no matter.Comment: 13 pages, RevTex, 8 figures. Version 2: includes discussion on the well-defined thin shell limit. Version 3: typos fixed, a reference added, accepted for publication in Phys. Rev.

    Two-dimensional Quantum Black Holes, Branes in BTZ and Holography

    Get PDF
    We solve semiclassical Einstein equations in two dimensions with a massive source and we find a static, thermodynamically stable, quantum black hole solution in the Hartle-Hawking vacuum state. We then study the black hole geometry generated by a boundary mass sitting on a non-zero tension 1-brane embedded in a three-dimensional BTZ black hole. We show that the two geometries coincide and we extract, using holographic relations, information about the CFT living on the 1-brane. Finally, we show that the quantum black hole has the same temperature of the bulk BTZ, as expected from the holographic principle.Comment: 10 pages, 2 figures, RevTex, ``point particle of mass \mu '' changed with ``massive boundary source'' for better clarity. Action in (50) written in Z_2 symmetric form. Appendix clarified. Minor corrections and references added. Version accepted for pubblication in PRD15 (2006

    Stability of Transparent Spherically Symmetric Thin Shells and Wormholes

    Get PDF
    The stability of transparent spherically symmetric thin shells (and wormholes) to linearized spherically symmetric perturbations about static equilibrium is examined. This work generalizes and systematizes previous studies and explores the consequences of including the cosmological constant. The approach shows how the existence (or not) of a domain wall dominates the landscape of possible equilibrium configurations.Comment: 12 pages, 7 figures, revtex. Final form to appear in Phys. Rev.

    Dust and molecules in the Local Group galaxy NGC 6822. III. The first-ranked HII region complex Hubble V

    Get PDF
    We present maps of the first-ranked HII region complex Hubble V in the metal-poor Local Group dwarf galaxy NGC 6822 in the first four transitions of CO, the 158 micron transition of C+, the 21-cm line of HI, the Pa-beta line of HII, and the continuum at 21 cm and 2.2 micron wavelengths. We have also determined various integrated intensities, notably of HCO+ and near-IR H2 emission. Although Hubble X is located in a region of relatively strong HI emission, our mapping failed to reveal any significant CO emission from it. The relatively small CO cloud complex associated with Hubble V is comparable in size to the ionized HII region. The CO clouds are hot (Tkin) = 150 K) and have high molecular gas densities (n(H2) = 10**4 cm**-3) Molecular hydrogen probably extends well beyond the CO boundaries. C+ column densities are more than an order of magnitude higher than those of CO. The total mass of the complex is about 10**6 M(sun) and molecular gas account for more than half of this. The complex is excited by luminous stars reddened or obscured at visual, but apparent at near-infrared wavelengths. The total embedded stellar mass may account for about 10% of the total mass, and the mass of ionized gas for half of that. Hubble V illustrates that modest star formation efficiencies may be associated with high CO destruction efficiencies in low-metallicity objects. The analysis of the Hubble V photon-dominated region (PDR) confirms in an independent manner the high value of the CO-to-H2 conversion factor X found earlier, characteristic of starforming low-metallicity regions.Comment: Accepted for publication in A&

    CO Emission in Low Luminosity, HI Rich Galaxies

    Full text link
    We present 12CO 1-0 observations of eleven low luminosity M_B > -18), HI--rich dwarf galaxies. Only the three most metal-rich galaxies, with 12+log(O/H) ~ 8.2, are detected. Very deep CO spectra of six extremely metal-poor systems (12+log(O/H) < 7.5) yield only low upper limits on the CO surface brightness, I_CO < 0.1 K km/s. Three of these six have never before been observed in a CO line, while the others now have much more stringent upper limits. For the very low metallicity galaxy Leo A, we do not confirm a previously reported detection in CO, and the limits are consistent with another recent nondetection. We combine these new observations with data from the literature to form a sample of dwarf galaxies which all have CO observations and measured oxygen abundances. No known galaxies with 12+log(O/H) < 7.9 (Z < 0.1 solar) have been detected in CO. Most of the star-forming galaxies with higher (12+log(O/H) > 8.1) metallicities are detected at similar or higher I_CO surface brightnesses. The data are consistent with a strong dependence of the I_CO/M_H_2 = X_CO conversion factor on ambient metallicity. The strikingly low upper limits on some metal-poor galaxies lead us to predict that the conversion factor is non-linear, increasing sharply below approximately 1/10 of the solar metallicity (12+log(O/H) < 7.9).Comment: 25 pages, 4 figures, 3 tables. Accepted for publication in AJ Tables replaced -- now formated for landscape orientatio

    Vacuum Polarization of a Massless Scalar Field in the Background of a Global Monopole with Finite Core

    Full text link
    In this paper we analyze the vacuum polarization effects of a massless scalar field in the background of a global monopole considering a inner structure to it. Specifically we investigate the effect of its structure on the vacuum expectation value of the square of the field operator, , admitting a non-minimal coupling between the field with the geometry: $\xi {\cal{R}}\hat{\Phi}^2$. Also we calculate the corrections on the vacuum expectation value of the energy-momentum tensor, , due to the inner structure of the monopole. In order to develop these analysis, we calculate the Euclidean Green function associated with the system for points in the region outside the core. As we shall see, for specific value of the coupling parameter Ο\xi, the corrections caused by the inner structure of the monopole can provide relevant contributions on these vacuum polarizations.Comment: Accepted for publication in Classical and Quantum Gravity. Added references. 22 pages, 1 figur

    Dynamical Instability of Self-Tuning Solution with Antisymmetric Tensor Field

    Get PDF
    We consider the dynamical stability of a static brane model that incorporates a three-index antisymmetric tensor field and has recently been proposed as a possible solution to the cosmological constant problem. Ultimately, we are able to establish the existence of time-dependent, purely gravitational perturbations. As a consequence, the static solution of interest is ``dangerously'' located at an unstable saddle point. This outcome is suggestive of a hidden fine tuning in what is an otherwise self-tuning model.Comment: 16 Pages, Latex; Discussion added but conclusions unchange

    High Excitation Molecular Gas in the Magellanic Clouds

    Full text link
    We present the first survey of submillimeter CO 4-3 emission in the Magellanic Clouds. The survey is comprised of 15 6'x6' maps obtained using the AST/RO telescope toward the molecular peaks of the Large and Small Magellanic Clouds. We have used these data to constrain the physical conditions in these objects, in particular their molecular gas density and temperature. We find that there are significant amounts of molecular gas associated with most of these molecular peaks, and that high molecular gas temperatures are pervasive throughout our sample. We discuss whether this may be due to the low metallicities and the associated dearth of gas coolants in the Clouds, and conclude that the present sample is insufficient to assert this effect.Comment: 18 pages, 3 figures, 5 tables. To appear in Ap

    A New Study of the Transition to Uniform Nuclear Matter in Neutron Stars and Supernovae

    Full text link
    A comprehensive microscopic study of the properties of bulk matter at densities just below nuclear saturation ρs=2.5∌1014\rho_s = 2.5 \sim 10^{14} g cm−3^{-3}, zero and finite temperature and high neutron fraction, is outlined, and preliminary results presented. Such matter is expected to exist in the inner crust of neutron stars and during the core collapse of massive stars with $M \gtrsim 8M_{\odot}Comment: 4 pages, 2 figures. Participant Contribution at the ``Dense Matter in Heavy Ion Collisions and Astrophysics" Summer School, JINR, Dubna, Aug. 21 - Sept. 1, 2006. To be published in PEPAN letter
    • 

    corecore