25,705 research outputs found
Resonance bifurcations from robust homoclinic cycles
We present two calculations for a class of robust homoclinic cycles with
symmetry Z_n x Z_2^n, for which the sufficient conditions for asymptotic
stability given by Krupa and Melbourne are not optimal.
Firstly, we compute optimal conditions for asymptotic stability using
transition matrix techniques which make explicit use of the geometry of the
group action.
Secondly, through an explicit computation of the global parts of the Poincare
map near the cycle we show that, generically, the resonance bifurcations from
the cycles are supercritical: a unique branch of asymptotically stable period
orbits emerges from the resonance bifurcation and exists for coefficient values
where the cycle has lost stability. This calculation is the first to explicitly
compute the criticality of a resonance bifurcation, and answers a conjecture of
Field and Swift in a particular limiting case. Moreover, we are able to obtain
an asymptotically-correct analytic expression for the period of the bifurcating
orbit, with no adjustable parameters, which has not proved possible previously.
We show that the asymptotic analysis compares very favourably with numerical
results.Comment: 24 pages, 3 figures, submitted to Nonlinearit
Increased plasticity of the bodily self in eating disorders
Background: The rubber hand illusion (RHI) has been widely used to investigate the bodily self in healthy individuals. The aim of the present study was to extend the use of the RHI to examine the bodily self in eating disorders. Methods: The RHI and self-report measures of eating disorder psychopathology (EDI-3 subscales of Drive for Thinness, Bulimia, Body Dissatisfaction, Interoceptive Deficits, and Emotional Dysregulation; DASS-21; and the Self-Objectification Questionnaire) were administered to 78 individuals with an eating disorder and 61 healthy controls. Results: Individuals with an eating disorder experienced the RHI significantly more strongly than healthy controls on both perceptual (i.e., proprioceptive drift) and subjective (self-report questionnaire) measures. Furthermore, both the subjective experience of the RHI and associated proprioceptive biases were correlated with eating disorder psychopathology. Approximately 20% of the variance for embodiment of the fake hand was accounted for by eating disorder psychopathology, with interoceptive deficits and self-objectification significant predictors of embodiment. Conclusions: These results indicate that the bodily self is more plastic in people with an eating disorder. These findings may shed light on both aetiological and maintenance factors involved in eating disorders, particularly visual processing of the body, interoceptive deficits, and self-objectification
On the symmetry breaking phenomenon
We investigate the problem of symmetry breaking in the framework of dynamical
systems with symmetry on a smooth manifold. Two cases will be analyzed: general
and Hamiltonian dynamical systems. We give sufficient conditions for symmetry
breaking in both cases
Polarization of Astronomical Maser Radiation. IV. Circular Polarization Profiles
Profile comparison of the Stokes parameters and is a powerful tool
for maser data analysis, providing the first direct methods for unambiguous
determination of (1) the maser saturation stage, (2) the amplification optical
depth and intrinsic Doppler width of unsaturated masers, and (3) the
comparative magnitudes of Zeeman splitting and Doppler linewidth. Circular
polarization recently detected in OH 1720 MHz emission from the Galactic center
appears to provide the first direct evidence for maser saturation.Comment: 14 pages, 1 Postscript figures (included), uses aaspp4.sty. To appear
in Astrophysical Journa
Cross-Correlation Studies between CMB Temperature Anisotropies and 21 cm Fluctuations
During the transition from a neutral to a fully reionized universe,
scattering of cosmic microwave background (CMB) photons via free-electrons
leads to a new anisotropy contribution to the temperature distribution. If the
reionization process is inhomogeneous and patchy, the era of reionization is
also visible via brightness temperature fluctuations in the redshifted 21 cm
line emission from neutral Hydrogen. Since regions containing electrons and
neutral Hydrogen are expected to trace the same underlying density field, the
two are (anti) correlated and this is expected to be reflected in the
anisotropy maps via a correlation between arcminute-scale CMB temperature and
the 21 cm background. In terms of the angular cross-power spectrum,
unfortunately, this correlation is insignificant due to a geometric
cancellation associated with second order CMB anisotropies. The same
cross-correlation between ionized and neutral regions, however, can be studied
using a bispectrum involving large scale velocity field of ionized regions from
the Doppler effect, arcminute scale CMB anisotropies during reionization, and
the 21 cm background. While the geometric cancellation is partly avoided, the
signal-to-noise ratio related to this bispectrum is reduced due to the large
cosmic variance related to velocity fluctuations traced by the Doppler effect.
Unless the velocity field during reionization can be independently established,
it is unlikely that the correlation information related to the relative
distribution of ionized electrons and regions containing neutral Hydrogen can
be obtained with a combined study involving CMB and 21 cm fluctuations.Comment: 10 pages, 3 figure
Calculation of The Lifetimes of Thin Stripper Targets Under Bombardment of Intense Pulsed Ions
The problems of stripper target behavior in the nonstationary intense
particle beams are considered. The historical sketch of studying of radiation
damage failure of carbon targets under ion bombardment is presented. The simple
model of evaporation of a target by an intensive pulsing beam is supposed.
Stripper foils lifetimes in the nonstationary intense particle can be described
by two failure mechanisms: radiation damage accumulation and evaporation of
target. At the maximal temperatures less than 2500K the radiation damage are
dominated; at temperatures above 2500K the mechanism of evaporation of a foil
prevails. The proposed approach has been applied to the discription of
behaviour of stripper foils in the BNL linac and SNS conditions.Comment: 12 pages, 5 figure
Persistent junk solutions in time-domain modeling of extreme mass ratio binaries
In the context of metric perturbation theory for non-spinning black holes,
extreme mass ratio binary (EMRB) systems are described by distributionally
forced master wave equations. Numerical solution of a master wave equation as
an initial boundary value problem requires initial data. However, because the
correct initial data for generic-orbit systems is unknown, specification of
trivial initial data is a common choice, despite being inconsistent and
resulting in a solution which is initially discontinuous in time. As is well
known, this choice leads to a "burst" of junk radiation which eventually
propagates off the computational domain. We observe another unintended
consequence of trivial initial data: development of a persistent spurious
solution, here referred to as the Jost junk solution, which contaminates the
physical solution for long times. This work studies the influence of both types
of junk on metric perturbations, waveforms, and self-force measurements, and it
demonstrates that smooth modified source terms mollify the Jost solution and
reduce junk radiation. Our concluding section discusses the applicability of
these observations to other numerical schemes and techniques used to solve
distributionally forced master wave equations.Comment: Uses revtex4, 16 pages, 9 figures, 3 tables. Document reformatted and
modified based on referee's report. Commentary added which addresses the
possible presence of persistent junk solutions in other approaches for
solving master wave equation
- …