11,189 research outputs found

    Top quark physics in hadron collisions

    Full text link
    The top quark is the heaviest elementary particle observed to date. Its large mass makes the top quark an ideal laboratory to test predictions of perturbation theory concerning heavy quark production at hadron colliders. The top quark is also a powerful probe for new phenomena beyond the Standard Model of particle physics. In addition, the top quark mass is a crucial parameter for scrutinizing the Standard Model in electroweak precision tests and for predicting the mass of the yet unobserved Higgs boson. Ten years after the discovery of the top quark at the Fermilab Tevatron top quark physics has entered an era where detailed measurements of top quark properties are undertaken. In this review article an introduction to the phenomenology of top quark production in hadron collisions is given, the lessons learned in Tevatron Run I are summarized, and first Run II results are discussed. A brief outlook to the possibilities of top quark research a the Large Hadron Collider, currently under construction at CERN, is included.Comment: 84 pages, 32 figures, accepted for publication by Reports on Progress in Physic

    On recent puzzles in the production of heavy quarkonia

    Full text link
    Recently, several surprising experimental observations in the production of heavy quarkonium have been reported. In e+ee^+e^- annihilation at s=10.6\sqrt{s}=10.6 GeV, Belle Collaboration finds that J/ψJ/\psi mesons are predominantly produced in association with an extra cˉc\bar{c}c pair, with σ(e+eJ/ψcˉc)/σ(e+eJ/ψX)=0.590.13+0.15±0.12\sigma(e^+e^- \to J/\psi \bar{c}c) / \sigma(e^+e^- \to J/\psi X) = 0.59^{+0.15}_{-0.13}\pm 0.12, and the BaBar collaboration reports that the produced J/ψJ/\psi's have mostly longitudinal polarization. In pˉp\bar{p}p collisions at the Tevatron, the CDF Collaboration reported an excess of J/ψJ/\psi and ψ\psi^{\prime} mesons at high pp_{\perp} over the perturbative QCD predictions; non--perturbative approach of NRQCD can accomodate the magnitude of the production cross section but not the observed experimentally polarization of quarkonia. In this note we propose possible solutions to these puzzles, and devise further experimental tests.Comment: 3 pages, 2 figure

    Periodic Chaotic Billiards: Quantum-Classical Correspondence in Energy Space

    Full text link
    We investigate the properties of eigenstates and local density of states (LDOS) for a periodic 2D rippled billiard, focusing on their quantum-classical correspondence in energy representation. To construct the classical counterparts of LDOS and the structure of eigenstates (SES), the effects of the boundary are first incorporated (via a canonical transformation) into an effective potential, rendering the one-particle motion in the 2D rippled billiard equivalent to that of two-interacting particles in 1D geometry. We show that classical counterparts of SES and LDOS in the case of strong chaotic motion reveal quite a good correspondence with the quantum quantities. We also show that the main features of the SES and LDOS can be explained in terms of the underlying classical dynamics, in particular of certain periodic orbits. On the other hand, statistical properties of eigenstates and LDOS turn out to be different from those prescribed by random matrix theory. We discuss the quantum effects responsible for the non-ergodic character of the eigenstates and individual LDOS that seem to be generic for this type of billiards with a large number of transverse channels.Comment: 13 pages, 18 figure

    The Infrared Spectrograph on the Spitzer Space Telescope

    Full text link
    The Infrared Spectrograph (IRS) is one of three science instruments on the Spitzer Space Telescope. The IRS comprises four separate spectrograph modules covering the wavelength range from 5.3 to 38micron with spectral resolutions, R \~90 and 600, and it was optimized to take full advantage of the very low background in the space environment. The IRS is performing at or better than the pre-launch predictions. An autonomous target acquisition capability enables the IRS to locate the mid-infrared centroid of a source, providing the information so that the spacecraft can accurately offset that centroid to a selected slit. This feature is particularly useful when taking spectra of sources with poorly known coordinates. An automated data reduction pipeline has been developed at the Spitzer Science Center.Comment: Accepted in ApJ Sup. Spitzer Special Issue, 6 pages, 4 figure

    Observations of Ultraluminous Infrared Galaxies with the Infrared Spectrograph on the Spitzer Space Telescope: Early Results on Mrk 1014, Mrk 463, and UGC 5101

    Full text link
    We present spectra taken with the Infrared Spectrograph on Spitzer covering the 5-38micron region of three Ultraluminous Infrared Galaxies (ULIRGs): Mrk 1014 (z=0.163), and Mrk 463 (z=0.051), and UGC 5101 (z=0.039). The continua of UGC 5101 and Mrk 463 show strong silicate absorption suggesting significant optical depths to the nuclei at 10microns. UGC 5101 also shows the clear presence of water ice in absorption. PAH emission features are seen in both Mrk 1014 and UGC 5101, including the 16.4micron line in UGC 5101. The fine structure lines are consistent with dominant AGN power sources in both Mrk 1014 and Mrk 463. In UGC 5101 we detect the [NeV] 14.3micron emission line providing the first direct evidence for a buried AGN in the mid-infrared. The detection of the 9.66micron and 17.03micron H2_{2} emission lines in both UGC 5101 and Mrk 463 suggest that the warm molecular gas accounts for 22% and 48% of the total molecular gas masses in these galaxies.Comment: Accepted in ApJ Sup. Spitzer Special Issue, 4 pages, 3 figure

    Massive Gauge Fields and the Planck Scale

    Full text link
    The present work is devoted to massive gauge fields in special relativity with two fundamental constants-the velocity of light, and the Planck length, so called doubly special relativity (DSR). The two invariant scales are accounted for by properly modified boost parameters. Within above framework we construct the vector potential as the (1/2,0)x(0,1/2) direct product, build the associated field strength tensor together with the Dirac spinors and use them to calculate various observables as functions of the Planck length.Comment: Affiliation of first author updated; Reference [13] updated; Typos in Refs. [15], [19] correcte

    The Quantum as an Emergent System

    Full text link
    Double slit interference is explained with the aid of what we call "21stcentury classical physics". We model a particle as an oscillator ("bouncer") in a thermal context, which is given by some assumed "zero-point" field of the vacuum. In this way, the quantum is understood as an emergent system, i.e., a steady-state system maintained by a constant throughput of (vacuum) energy. To account for the particle's thermal environment, we introduce a "path excitation field", which derives from the thermodynamics of the zero-point vacuum and which represents all possible paths a particle can take via thermal path fluctuations. The intensity distribution on a screen behind a double slit is calculated, as well as the corresponding trajectories and the probability density current. Further, particular features of the relative phase are shown to be responsible for nonlocal effects not only in ordinary quantum theory, but also in our classical approach.Comment: 24 pages, 2 figures, based on a talk given at "Emergent Quantum Mechanics (Heinz von Foerster Conference 2011)", http://www.univie.ac.at/hvf11/congress/EmerQuM.htm

    Hydrodynamics of topological defects in nematic liquid crystals

    Full text link
    We show that back-flow, the coupling between the order parameter and the velocity fields, has a significant effect on the motion of defects in nematic liquid crystals. In particular the defect speed can depend strongly on the topological strength in two dimensions and on the sense of rotation of the director about the core in three dimensions.Comment: 4 pages including two figure
    corecore