133 research outputs found
Contrasting synergistic heterobimetallic (Na-Mg) and homometallic (Na or Mg) bases in metalation reactions of dialkylphenylphosphines and dialkylanilines : lateral vs ring selectivities
A series of dialkyl phenylphosphines and their analogous aniline substrates have been metallated with the synergistic mixedmetal base [(TMEDA)Na(TMP)(CH2SiMe3)Mg(TMP)] 1. Different metallation regioselectivities for the substrates were observed, with predominately lateral or meta-magnesiated products isolated from solution. Three novel heterobimetallic complexes [(TMEDA)Na(TMP)(CH2PCH3Ph)Mg(TMP)] 2, [(TMEDA)Na(TMP)(m- C6H4PiPr2)Mg(TMP)] 3 and [(TMEDA)Na(TMP)(m- C6H4NEt2)Mg(TMP)] 4 and two homometallic complexes [{(TMEDA)Na(EtNC6H5)}2] 5 and [(TMEDA)Na2(TMP)(C6H5PEt)]2 6 derived from homometallic metalation have been crystallographically characterised. Complex 6 is an unprecedented sodium-amide, sodium-phosphide hybrid with a rare (NaNNaP)2 ladder motif. These products reveal contrasting heterobimetallic deprotonation with homometallic induced ethene elimination reactivity. Solution studies of metallation mixtures and electrophilic iodine quenching reactions confirmed the metallation sites. In an attempt to rationalise the regioselectivity of the magnesiation reactions the C-H acidities of the six substrates were determined in THF solution using DFT calculations employing the M06-2X functional and cc-pVTZ Dunning’s basis set
Ultrafast structure and dynamics in ionic liquids: 2D-IR spectroscopy probes the molecular origin of viscosity
The viscosity of imidazolium ionic liquids increases dramatically when the strongest hydrogen bonding location is methylated. In this work, ultrafast two-dimensional vibrational spectroscopy of dilute thiocyanate ion ([SCN] -) in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C4C1im][NTf2]) and 1-butyl-2,3- dimethylimidazolium bis(trifluoromethylsulfonyl)imide ([C4C 1C12im][NTf2]) shows that the structural reorganization occurs on a 26 ± 3 ps time scale and on a 47 ± 15 ps time scale, respectively. The results suggest that the breakup of local ion-cages is the fundamental event that activates molecular diffusion and determines the viscosity of the fluids. © 2014 American Chemical Society
Hydrogen Bonding Constrains Free Radical Reaction Dynamics at Serine and Threonine Residues in Peptides
Free radical-initiated peptide sequencing (FRIPS) mass spectrometry derives advantage from the introduction of highly selective low-energy dissociation pathways in target peptides. An acetyl radical, formed at the peptide N-terminus via collisional activation and subsequent dissociation of a covalently attached radical precursor, abstracts a hydrogen atom from diverse sites on the peptide, yielding sequence information through backbone cleavage as well as side-chain loss. Unique free-radical-initiated dissociation pathways observed at serine and threonine residues lead to cleavage of the neighboring N-terminal C_α–C or N–C_α bond rather than the typical Cα–C bond cleavage observed with other amino acids. These reactions were investigated by FRIPS of model peptides of the form AARAAAXAA, where X is the amino acid of interest. In combination with density functional theory (DFT) calculations, the experiments indicate the strong influence of hydrogen bonding at serine or threonine on the observed free radical chemistry. Hydrogen bonding of the side-chain hydroxyl group with a backbone carbonyl oxygen aligns the singly occupied π orbital on the β-carbon and the N–C_α bond, leading to low-barrier β-cleavage of the N–C_α bond. Interaction with the N-terminal carbonyl favors a hydrogen-atom transfer process to yield stable c and z• ions, whereas C-terminal interaction leads to effective cleavage of the C_α–C bond through rapid loss of isocyanic acid. Dissociation of the C_α–C bond may also occur via water loss followed by β-cleavage from a nitrogen-centered radical. These competitive dissociation pathways from a single residue illustrate the sensitivity of gas-phase free radical chemistry to subtle factors such as hydrogen bonding that affect the potential energy surface for these low-barrier processes
Benchmark thermochemistry of the C_nH_{2n+2} alkane isomers (n=2--8) and performance of DFT and composite ab initio methods for dispersion-driven isomeric equilibria
The thermochemistry of linear and branched alkanes with up to eight carbons
has been reexamined by means of W4, W3.2lite and W1h theories. `Quasi-W4'
atomization energies have been obtained via isodesmic and hypohomodesmotic
reactions. Our best atomization energies at 0 K (in kcal/mol) are: 1220.04
n-butane, 1497.01 n-pentane, 1774.15 n-hexane, 2051.17 n-heptane, 2328.30
n-octane, 1221.73 isobutane, 1498.27 isopentane, 1501.01 neopentane, 1775.22
isohexane, 1774.61 3-methylpentane, 1775.67 diisopropyl, 1777.27 neohexane,
2052.43 isoheptane, 2054.41 neoheptane, 2330.67 isooctane, and 2330.81
hexamethylethane. Our best estimates for are: -30.00
n-butane, -34.84 n-pentane, -39.84 n-hexane, -44.74 n-heptane, -49.71 n-octane,
-32.01 isobutane, -36.49 isopentane, -39.69 neopentane, -41.42 isohexane,
-40.72 3-methylpentane, -42.08 diisopropyl, -43.77 neohexane, -46.43
isoheptane, -48.84 neoheptane, -53.29 isooctane, and -53.68 hexamethylethane.
These are in excellent agreement (typically better than 1 kJ/mol) with the
experimental heats of formation at 298 K obtained from the CCCBDB and/or NIST
Chemistry WebBook databases. However, at 0 K a large discrepancy between theory
and experiment (1.1 kcal/mol) is observed for only neopentane. This deviation
is mainly due to the erroneous heat content function for neopentane used in
calculating the 0 K CCCBDB value. The thermochemistry of these systems,
especially of the larger alkanes, is an extremely difficult test for density
functional methods. A posteriori corrections for dispersion are essential.
Particularly for the atomization energies, the B2GP-PLYP and B2K-PLYP
double-hybrids, and the PW6B95 hybrid-meta GGA clearly outperform other DFT
functionals.Comment: (J. Phys. Chem. A, in press
Separation and recovery of critical metal ions using ionic liquids
Separation and purification of critical metal ions such as rare-earth elements (REEs), scandium and niobium from their minerals is difficult and often determines if extraction is economically and environmentally feasible. Solvent extraction is a commonly used metal-ion separation process, usually favored because of its simplicity, speed and wide scope, which is why it is often employed for separating trace metals from their minerals. However, the types of solvents widely used for the recovery of metal ions have adverse environmental impact. Alternatives to solvent extraction have been explored and advances in separation technologies have seen commercial establishment of liquid membranes as an alternative to conventional solvent extraction for the recovery of metals and other valuable materials. Liquid membrane transport incorporates solvent extraction and membrane separation in one continuously operating system. Both methods conventionally use solvents that are harmful to the environment, however, the introduction of ionic liquids (ILs) over the last decade is set to minimize the environmental impact of both solvent extraction and liquid membrane separation processes. ILs are a family of organic molten salts with low or negligible vapour pressure which may be formed below 100 oC. Such liquids are also highly thermally stable and less toxic. Their ionic structure makes them thermodynamically favorable solvents for the extraction of metallic ions. The main aim of this article is to review the current achievements in the separation of REE, scandium, niobium and vanadium from their minerals, using ILs in either solvent extraction or liquid membrane processes. The mechanism of separation using ILs is discussed and the engineering constraints to their application are identified
Unusual Products from Oxidation of Naphthalene Diimides
Transforming the naphthalene diimide (NDI) core into unusual aromatic systems has large potential for applications in which current NDI-based systems show promise. Treatment of N,N-dialkylNDIs under mild oxidizing conditions with ruthenium(III) chloride and sodium periodate affords the corresponding 1,4-diones in good yield. Interestingly, while aliphatic substituents at the N-imide positions allowed oxidation to take place easily, the presence of neutral, electron-rich or electron-deficient phenyl groups retarded the oxidation process under these reaction conditions. The chemistry of the 1,4-dione is then explored through reduction and condensation reactions. In two examples, reaction of the 1,4-dione with diamines gives an unusual, ring-contracted product 20, which has a high quantum yield. Additionally, the 1,4-dione can be converted into larger heterocycles such as 21 and 22 featuring an isoquinoline core. The 1,4-diones and their products have been investigated by spectroscopy, cyclic voltammetry, theoretical studies, and X-ray crystallography. The results obtained demonstrate the potential of the 1,4-dione to serve as an invaluable precursor for NDI-based research
A Redox Switchable Dihydrobenzo[b]pyrazine Push-Pull System
The synthesis and spectroscopic properties of a dissymmetrically core-extended naphthalene diimides derived from o-phenylenediamine and cyanoethene dithiolate were explored. The push-pull nature of the peripheral substituents allows these naphthalene diimide dyes and their progenitors to display interesting photophysical and electrochemical properties, with the target system acting as a highly reversible and quantitative molecular switch with clear absorption and emission readouts based on chemical oxidation and reduction processes
- …