86 research outputs found

    A global classification of coastal flood hazard climates associated with large-scale oceanographic forcing

    Get PDF
    Coastal communities throughout the world are exposed to numerous and increasing threats, such as coastal flooding and erosion, saltwater intrusion and wetland degradation. Here, we present the first global-scale analysis of the main drivers of coastal flooding due to large-scale oceanographic factors. Given the large dimensionality of the problem (e.g. spatiotemporal variability in flood magnitude and the relative influence of waves, tides and surge levels), we have performed a computer-based classification to identify geographical areas with homogeneous climates. Results show that 75% of coastal regions around the globe have the potential for very large flooding events with low probabilities (unbounded tails), 82% are tide-dominated, and almost 49% are highly susceptible to increases in flooding frequency due to sea-level rise.A.R., F.J.M. and P.C. acknowledge the support of the Spanish ‘Ministerio de Economia y Competitividad’ under Grants BIA2014-59643-R and BIA2015-70644-R. This work was critically supported by the US Geological Survey under Grant/Cooperative Agreement G15AC00426 and from the US DOD Strategic Environmental Research and Development Program (SERDP Project RC-2644) through the NOAA National Centers for Environmental Information (NCEI). Dynamic atmospheric corrections (storm surge) are produced by CLS Space Oceanography Division using the Mog2D model from Legos and distributed by Aviso, with support from CNES (http://www.aviso.altimetry.fr/). Marine data from global reanalysis are provided by IHCantabria and are available for research purposes upon request at [email protected]

    Stringent response of Escherichia coli: revisiting the bibliome using literature mining

    Get PDF
    Understanding the mechanisms responsible for cellular responses depends on the systematic collection and analysis of information on the main biological concepts involved. Indeed, the identification of biologically relevant concepts in free text, namely genes, tRNAs, mRNAs, gene products and small molecules, is crucial to capture the structure and functioning of different responses. Results In this work, we review literature reports on the study of the stringent response in Escherichia coli. Rather than undertaking the development of a highly specialised literature mining approach, we investigate the suitability of concept recognition and statistical analysis of concept occurrence as means to highlight the concepts that are most likely to be biologically engaged during this response. The co-occurrence analysis of core concepts in this stringent response, i.e. the (p)ppGpp nucleotides with gene products was also inspected and suggest that besides the enzymes RelA and SpoT that control the basal levels of (p)ppGpp nucleotides, many other proteins have a key role in this response. Functional enrichment analysis revealed that basic cellular processes such as metabolism, transcriptional and translational regulation are central, but other stress-associated responses might be elicited during the stringent response. In addition, the identification of less annotated concepts revealed that some (p)ppGpp-induced functional activities are still overlooked in most reviews. Conclusions In this paper we applied a literature mining approach that offers a more comprehensive analysis of the stringent response in E. coli. The compilation of relevant biological entities to this stress response and the assessment of their functional roles provided a more systematic understanding of this cellular response. Overlooked regulatory entities, such as transcriptional regulators, were found to play a role in this stress response. Moreover, the involvement of other stress-associated concepts demonstrates the complexity of this cellular response
    corecore