1,181,878 research outputs found

    Four Years of Extreme Ultraviolet Observations of Markarian 421: II. Temporal Analysis

    Get PDF
    The Extreme Ultraviolet Explorer (EUVE) satellite accumulated ~one million seconds of public data between 1994 and 1997 for the BL Lacertae object Markarian 421. This is the second of two papers in which we present the results of spectral and temporal analysis of this EUVE data set. We analyze in the present paper the imaging data by means of power spectrum and structure function techniques, while the spectral analysis is presented in a companion paper. We find for MRK 421 a power spectrum with slope -2.14 +- 0.28 with a break at ~3 days. This is the first time that a break in the power spectrum of a BL Lacertae object has been found. We also find evidence of non-stationarity for MRK 421 EUV emissionComment: Accepted for publication in the Astrophysical Journal. 16 pages, 14 Postscript figures, 3 Table

    Scale Symmetry Breaking from the Dynamics of Maximal Rank Gauge Field Strengths

    Full text link
    Scale invariant theories which contain maximal rank gauge field strengths (of DD indices in DD dimensions) are studied. The integration of the equations of motion of these gauge fields leads to the s.s.b. of scale invariance. The cases in study are: i) the spontaneous generation of r1r^{-1} potentials in particle mechanics in a theory that contains only r2r^{-2} potentials in the scale invariant phase, ii) mass generation in scalar field theories iii) generation of non trivial dilaton potentials in generally covariant theories, iv) spontaneous generation of confining behavior in gauge theories. The possible origin of these models is discussed.Comment: 14 pages, latex, no figures, references adde

    Interplay of spin-orbit coupling and Zeeman splitting in the absorption lineshape of 2D fermions

    Full text link
    We suggest that electron spin resonance (ESR) experiment can be used as a probe of spinon excitations of hypothetical spin-liquid state of frustrated antiferromagnet in the presence of asymmetric Dzyaloshinskii-Moriya (DM) interaction. We describe assumptions under which the ESR response is reduced to the response of 2D electron gas with Rashba spin-orbit coupling. Unlike previous treatments, the spin-orbit coupling, \Delta_{SO}, is not assumed small compared to the Zeeman splitting, \Delta_Z. We demonstrate that ESR response diverges at the edges of the absorption spectrum for ac magnetic field perpendicular to the static field. At the compensation point, \Delta_{SO}\approx \Delta_Z, the broad absorption spectrum exhibits features that evolve with temperature, T, even when T is comparable to the Fermi energy.Comment: 11 pages, 6 figure

    Coulomb Glasses: A Comparison Between Mean Field and Monte Carlo Results

    Full text link
    Recently a local mean field theory for both eqilibrium and transport properties of the Coulomb glass was proposed [A. Amir et al., Phys. Rev. B 77, 165207 (2008); 80, 245214 (2009)]. We compare the predictions of this theory to the results of dynamic Monte Carlo simulations. In a thermal equilibrium state we compare the density of states and the occupation probabilities. We also study the transition rates between different states and find that the mean field rates underestimate a certain class of important transitions. We propose modified rates to be used in the mean field approach which take into account correlations at the minimal level in the sense that transitions are only to take place from an occupied to an empty site. We show that this modification accounts for most of the difference between the mean field and Monte Carlo rates. The linear response conductance is shown to exhibit the Efros-Shklovskii behaviour in both the mean field and Monte Carlo approaches, but the mean field method strongly underestimates the current at low temperatures. When using the modified rates better agreement is achieved

    Mechanism of half-frequency electric dipole spin resonance in double quantum dots: Effect of nonlinear charge dynamics inside the singlet manifold

    Full text link
    Electron dynamics in quantum dots manifests itself in spin-flip spectra through electric dipole spin resonance (EDSR). Near a neutrality point separating two different singlet charged states of a double quantum dot, charge dynamics inside a 2×22\times2 singlet manifold can be described by a 1/2-pseudospin. In this region, charge dynamics is highly nonlinear and strongly influenced by flopping its soft pseudospin mode. As a result, the responses to external driving include first and second harmonics of the driving frequency and their Raman satellites shifted by the pseudospin frequency. In EDSR spectra of a spin-orbit couplet doublet dot, they manifest themselves as charge satellites of spin-flip transitions. The theory describes gross features of the anomalous half-frequency EDSR in spin blockade spectra [Laird et al., Semicond. Sci. Techol. {\bf 24}, 064004 (2009)].Comment: One figure, one equation, comments adde

    Quantum nanostructures in strongly spin-orbit coupled two-dimensional systems

    Full text link
    Recent progress in experimental studies of low-dimensional systems with strong spin-orbit coupling poses a question on the effect of this coupling on the energy spectrum of electrons in semiconductor nanostructures. It is shown in the paper that this effect is profound in the strong coupling limit. In circular quantum dots a soft mode develops, in strongly elongated dots electron spin becomes protected from the effects of the environment, and the lower branch of the energy spectrum of quantum wires becomes nearly flat in a wide region of the momentum space.Comment: 5 pages, 1 figur

    Coherent spin dynamics in quantum wells in quantizing magnetic field

    Full text link
    We investigate theoretically the coherent longitudinal and transversal spin relaxation of photoexcited electrons in quantum wells in quantized magnetic fields. We find the relaxation time for typical quantum well parameters between 100 and 1000 ps. For a realistic random potential the relaxation process depends on the electron energy and g-factor, demonstrating oscillations in the spin polarization accompanying the spin relaxation. The dependence of spin relaxation on applied field, and thus on the corresponding "magnetic" length, can be used to characterize the spatial scale of disorder in quantum wells.Comment: 13 pages, 4 figure

    Renormalization of spin-orbit coupling in quantum dots due to Zeeman interaction

    Full text link
    We derive analitycally a partial diagonalization of the Hamiltonian representing a quantum dot including spin-orbit interaction and Zeeman energy on an equal footing. It is shown that the interplay between these two terms results in a renormalization of the spin-orbit intensity. The relation between this feature and experimental observations on conductance fluctuations is discussed, finding a good agreement between the model predictions and the experimental behavior.Comment: 4 pages, no figures. To appear in Phys. Rev. B (Brief Report) (2004

    Time-Reversal Symmetry Breaking and Spontaneous Anomalous Hall Effect in Fermi Fluids

    Full text link
    We study the spontaneous non-magnetic time-reversal symmetry breaking in a two-dimensional Fermi liquid without breaking either the translation symmetry or the U(1) charge symmetry. Assuming that the low-energy physics is described by fermionic quasiparticle excitations, we identified an "emergent" local U(1)NU(1)^N symmetry in momentum space for an NN-band model. For a large class of models, including all one-band and two-band models, we found that the time-reversal and chiral symmetry breaking can be described by the U(1)NU(1)^N gauge theory associated with this emergent local U(1)NU(1)^N symmetry. This conclusion enables the classification of the time-reversal symmetry-breaking states as types I and II, depending on the type of accompanying spatial symmetry breaking. The properties of each class are studied. In particular, we show that the states breaking both time-reversal and chiral symmetries are described by spontaneously generated Berry phases. We also show examples of the time-reversal symmetry-breaking phases in several different microscopically motivated models and calculate their associated Hall conductance within a mean-field approximation. The fermionic nematic phase with time-reversal symmetry breaking is also presented and the possible realizations in strongly correlated models such as the Emery model are discussed.Comment: 18 pages, 8 figure
    corecore