1,113 research outputs found
Linear correlations between 4He trimer and tetramer energies calculated with various realistic 4He potentials
In a previous work [Phys. Rev. A 85, 022502 (2012)] we calculated, with the
use of our Gaussian expansion method for few-body systems, the energy levels
and spatial structure of the 4He trimer and tetramer ground and excited states
using the LM2M2 potential, which has a very strong short-range repulsion. In
this work, we calculate the same quantities using the presently most accurate
4He-4He potential [M. Przybytek et al., Phys. Rev. Lett. 104, 183003 (2010)]
that includes the adiabatic, relativistic, QED and residual retardation
corrections. Contributions of the corrections to the tetramer
ground-(excited-)state energy, -573.90 (-132.70) mK, are found to be,
respectively, -4.13 (-1.52) mK, +9.37 (+3.48) mK, -1.20 (-0.46) mK and +0.16
(+0.07) mK. Further including other realistic 4He potentials, we calculated the
binding energies of the trimer and tetramer ground and excited states, B_3^(0),
B_3^(1), B_4^(0) and B_4^(1), respectively. We found that the four kinds of the
energies for the different potentials exhibit perfect linear correlations
between any two of them over the range of binding energies relevant for 4He
atoms (namely, six types of the generalized Tjon lines are given). The
dimerlike-pair model for 4He clusters, proposed in the previous work, predicts
a simple universal relation B_4^(1)/B_2 =B_3^(0)/B_2 + 2/3, which precisely
explains the correlation between the tetramer excited-state energy and the
trimer ground-state energy, with B_2 being the dimer binding energy.Comment: 10 pages, 3 figures, published version in Phys. Rev. A85, 062505
(2012), Figs. 2, 5, and 6 added, minor changes in the description of the
dimerlike-pair mode
Constituent quark model for baryons with strong quark-pair correlations and non-leptonic weak transitions of hyperon
We study the roles of quark-pair correlations for baryon properties, in
particular on non-leptonic weak decay of hyperons. We construct the quark wave
function of baryons by solving the three body problem explicitly with
confinement force and the short range attraction for a pair of quarks with
their total spin being 0. We show that the existence of the strong quark-quark
correlations enhances the non-leptonic transition amplitudes which is
consistent with the data, while the baryon masses and radii are kept to the
experiment.Comment: 4 pages, 2 figures, talk presented at KEK-Tanashi International
Symposium on Physics of Hadrons and Nuclei, Tokyo, Japan, 14-17 Dec. 199
On the possibility of generating a 4-neutron resonance with a {\boldmath } isospin 3-neutron force
We consider the theoretical possibility to generate a narrow resonance in the
four neutron system as suggested by a recent experimental result. To that end,
a phenomenological three neutron force is introduced, in addition to a
realistic interaction. We inquire what should be the strength of the
force in order to generate such a resonance. The reliability of the
three-neutron force in the channel is exmined, by analyzing its
consistency with the low-lying states of H, He and Li and the
scattering.
The {\it ab initio} solution of the Schr\"{o}dinger equation is obtained
using the complex scaling method with boundary conditions appropiate to the
four-body resonances. We find that in order to generate narrow resonant
states a remarkably attractive force in the channel is required.Comment: 11 pages, 11 figures, minor change, published version, to be
published in Physical Review
Role of quark-quark correlation in baryon structure and non-leptonic weak transitions of hyperons
We study the role of quark-quark correlation in the baryon structure and, in
particular, the hyperon non-leptonic weak decay, which is sensitive to the
correlation between quarks in the spin-0 channel. We rigorously solve
non-relativistic three-body problem for SU(3) ground state baryons to take into
account the quark-pair correlation explicitly. With the suitable attraction in
the spin-0 channel, resulting static baryon properties as well as the parity
conserving weak decay amplitudes agree with the experimental values. Special
emphasis is placed also on the effect of the SU(6) spin-flavor symmetry
breaking on the baryon structure. Although the SU(6) breaking effects on the
local behavior of the quark wave functions are considerable due to the spin-0
attraction, the calculated magnetic moments are almost the same as the naive
SU(6) expectations
Efimov universality with Coulomb interaction
The universal properties of charged particles are modified by the presence of
a long-range Coulomb interaction. We investigate the modification of Efimov
universality as a function of the Coulomb strength using the Gaussian expansion
method. The resonant short-range interaction is described by Gaussian
potentials to which a Coulomb potential is added. We calculate binding energies
and root mean square radii for the three- and four-body systems of charged
particles and present our results in a generalised Efimov plot. We find that
universal features can still be discerned for weak Coulomb interaction, but
break down for strong Coulomb interaction. The root-mean-square radius plateaus
at increasingly smaller values for strong Coulomb interaction and the
probablity distributions of the states become more concentrated inside the
Coulomb barrier. As an example, we apply our universal model to nuclei with an
alpha-cluster substructure. Our results point to strong non-universal
contributions in that sector.Comment: 18 pages, 9 figures, final version (with small orthographical
corrections
- …