1,854 research outputs found

    Nernst Effect and Superconducting Fluctuations in Zn-doped YBa2_{2}Cu3_{3}O7δ_{7-\delta}

    Full text link
    We report the measurements of in-plane resistivity, Hall effect, and Nernst effect in Zn doped YBa2_{2}Cu3_{3}O7δ_{7-\delta} epitaxial thin films grown by pulsed laser deposition technique. The pseudogap temperature, TT^*, determined from the temperature dependence of resistivity, does not change significantly with Zn doping. Meanwhile the onset temperature (TνT^{\nu}) of anomalous Nernst signal above Tc0T_{c0}, which is interpreted as evidence for vortex-like excitations, decreases sharply as the superconducting transition temperature Tc0T_{c0} does. A significant decrease in the maximum of vortex Nernst signal in mixed state is also observed, which is consistent with the scenario that Zn impurities cause a decrease in the superfluid density and therefore suppress the superconductivity. The phase diagram of TT^*, TνT^{\nu}, and Tc0T_{c0} versus Zn content is presented and discussed.Comment: 6 pages, 5 figures, Latex; v2: to be published in PR

    Frustration and the Kondo effect in heavy fermion materials

    Full text link
    The observation of a separation between the antiferromagnetic phase boundary and the small-large Fermi surface transition in recent experiments has led to the proposal that frustration is an important additional tuning parameter in the Kondo lattice model of heavy fermion materials. The introduction of a Kondo (K) and a frustration (Q) axis into the phase diagram permits us to discuss the physics of heavy fermion materials in a broader perspective. The current experimental situation is analysed in the context of this combined "QK" phase diagram. We discuss various theoretical models for the frustrated Kondo lattice, using general arguments to characterize the nature of the ff-electron localization transition that occurs between the spin liquid and heavy Fermi liquid ground-states. We concentrate in particular on the Shastry--Sutherland Kondo lattice model, for which we establish the qualitative phase diagram using strong coupling arguments and the large-NN expansion. The paper closes with some brief remarks on promising future theoretical directions.Comment: To appear in a special issue of JLT

    Investigation of the Spin Density Wave in NaxCoO2

    Full text link
    Magnetic susceptibility, transport and heat capacity measurements of single crystal NaxCoO2 (x=0.71) are reported. A transition to a spin density wave (SDW) state at Tmag = 22 K is observable in all measurements, except chi(ac) data in which a cusp is observed at 4 K and attributed to a low temperature glassy phase. M(H) loops are hysteretic below 15 K. Both the SDW transition and low temperature hysteresis are only visible along the c-axis. The system also exhibits a substantial (~40%) positive magnetoresistance below this temperature. Calculations of the electronic heat capacity gamma above and below Tmag and the size of the jump in C indicate that the onset of the SDW brings about the opening of gap and the removal of part of the Fermi surface. Reduced in-plane electron-electron scattering counteracts the loss of carriers below the transition and as a result we see a net reduction in resistivity below Tmag. Sodium ordering transitions at higher temperatures are observable as peaks in the heat capacity with a corresponding increase in resistivity.Comment: 14 pages, 6 figure

    Large corrections to asymptotic FηcγF_{\eta_c \gamma} and FηbγF_{\eta_b \gamma} in the light-cone perturbative QCD

    Full text link
    The large-Q2Q^2 behavior of ηc\eta_c-γ\gamma and ηb\eta_b-γ\gamma transition form factors, Fηcγ(Q2)F_{\eta_c\gamma}(Q^2) and Fηbγ(Q2)F_{\eta_b\gamma}(Q^2) are analyzed in the framework of light-cone perturbative QCD with the heavy quark (cc and bb) mass effect, the parton's transverse momentum dependence and the higher helicity components in the light-cone wave function are respected. It is pointed out that the quark mass effect brings significant modifications to the asymptotic predictions of the transition form factors in a rather broad energy region, and this modification is much severer for Fηbγ(Q2)F_{\eta_b\gamma}(Q^2) than that for Fηcγ(Q2)F_{\eta_c\gamma}(Q^2) due to the bb-quark being heavier than the cc-quark. The parton's transverse momentum and the higher helicity components are another two factors which decrease the perturbative predictions. For the transition form factor Fηcγ(Q2)F_{\eta_c\gamma}(Q^2), they bring sizable corrections in the present experimentally accessible energy region (Q210GeV2Q^2 \leq 10 GeV^2). For the transition form factor Fηbγ(Q2)F_{\eta_b\gamma}(Q^2), the corrections coming from these two factors are negligible since the bb-quark mass is much larger than the parton's average transverse momentum. The coming e+ee^+ e^- collider (LEP2) will provide the opportunity to examine these theoretical predictions.Comment: 8 pages, RevTex, 5 PostScript figure

    Global Phase Diagram of the Kondo Lattice: From Heavy Fermion Metals to Kondo Insulators

    Full text link
    We discuss the general theoretical arguments advanced earlier for the T=0 global phase diagram of antiferromagnetic Kondo lattice systems, distinguishing between the established and the conjectured. In addition to the well-known phase of a paramagnetic metal with a "large" Fermi surface (P_L), there is also an antiferromagnetic phase with a "small" Fermi surface (AF_S). We provide the details of the derivation of a quantum non-linear sigma-model (QNLsM) representation of the Kondo lattice Hamiltonian, which leads to an effective field theory containing both low-energy fermions in the vicinity of a Fermi surface and low-energy bosons near zero momentum. An asymptotically exact analysis of this effective field theory is made possible through the development of a renormalization group procedure for mixed fermion-boson systems. Considerations on how to connect the AF_S and P_L phases lead to a global phase diagram, which not only puts into perspective the theory of local quantum criticality for antiferromagnetic heavy fermion metals, but also provides the basis to understand the surprising recent experiments in chemically-doped as well as pressurized YbRh2Si2. We point out that the AF_S phase still occurs for the case of an equal number of spin-1/2 local moments and conduction electrons. This observation raises the prospect for a global phase diagram of heavy fermion systems in the Kondo-insulator regime. Finally, we discuss the connection between the Kondo breakdown physics discussed here for the Kondo lattice systems and the non-Fermi liquid behavior recently studied from a holographic perspective.Comment: (v3) leftover typos corrected. (v2) Published version. 32 pages, 4 figures. Section 7, on the connection between the Kondo lattice systems and the holographic models of non-Fermi liquid, is expanded. (v1) special issue of JLTP on quantum criticalit

    Long-term monitoring of the TeV emission from Mrk 421 with the ARGO-YBJ experiment

    Get PDF
    ARGO-YBJ is an air shower detector array with a fully covered layer of resistive plate chambers. It is operated with a high duty cycle and a large field of view. It continuously monitors the northern sky at energies above 0.3 TeV. In this paper, we report a long-term monitoring of Mrk 421 over the period from 2007 November to 2010 February. This source was observed by the satellite-borne experiments Rossi X-ray Timing Explorer and Swift in the X-ray band. Mrk 421 was especially active in the first half of 2008. Many flares are observed in both X-ray and gamma-ray bands simultaneously. The gamma-ray flux observed by ARGO-YBJ has a clear correlation with the X-ray flux. No lag between the X-ray and gamma-ray photons longer than 1 day is found. The evolution of the spectral energy distribution is investigated by measuring spectral indices at four different flux levels. Hardening of the spectra is observed in both X-ray and gamma-ray bands. The gamma-ray flux increases quadratically with the simultaneously measured X-ray flux. All these observational results strongly favor the synchrotron self-Compton process as the underlying radiative mechanism.Comment: 30 pages, 8 figure

    Effect of Na content and hydration on the excitation spectrum of the cobaltite Na_xCoO_2 yH_2O

    Full text link
    We report on a Raman scattering study on the superconducting cobaltite NaxCoO2yH2ONa_xCoO_2\cdot yH_2O as function of Na content and hydration (x\approx1/3, 3/4 and y\approx0, 2/3, 4/3). The observed phonon scattering and scattering continua are analyzed in terms of lattice strain due to the structural misfit and disorder. Hydration, due to the intercalation of one or two H2OH_2O layers, releases a part of this strain. Our Raman data suggest a connection between disorder on the partly occupied Na sites, the split off of the a1ga_{1g} level from the other t2gt_{2g} states of Co4+Co^{4+} and superconductivity.Comment: 10 pages, 4 figures, for further information see http://www.peter-lemmens.d

    Anomalous Transport Phenomena in Fermi Liquids with Strong Magnetic Fluctuations

    Full text link
    In many strongly correlated electron systems, remarkable violation of the relaxation time approximation (RTA) is observed. The most famous example would be high-Tc superconductors (HTSCs), and similar anomalous transport phenomena have been observed in metals near their antiferromagnetic (AF) quantum critical point (QCP). Here, we develop a transport theory involving resistivity and Hall coefficient on the basis of the microscopic Fermi liquid theory, by considering the current vertex correction (CVC). In nearly AF Fermi liquids, the CVC accounts for the significant enhancements in the Hall coefficient, magnetoresistance, thermoelectric power, and Nernst coefficient in nearly AF metals. According to the numerical study, aspects of anomalous transport phenomena in HTSC are explained in a unified way by considering the CVC, without introducing any fitting parameters; this strongly supports the idea that HTSCs are Fermi liquids with strong AF fluctuations. In addition, the striking \omega-dependence of the AC Hall coefficient and the remarkable effects of impurities on the transport coefficients in HTSCs appear to fit naturally into the present theory. The present theory also explains very similar anomalous transport phenomena occurring in CeCoIn5 and CeRhIn5, which is a heavy-fermion system near the AF QCP, and in the organic superconductor \kappa-(BEDT-TTF).Comment: 100 pages, Rep. Prog. Phys. 71, 026501 (2008

    Electromagnetic Transition Form Factor of Pseudoscalar Meson and ηη\eta-\eta' Mixing

    Full text link
    The electromagnetic transition form factors of η\eta and η\eta' are calculated in the light-cone perturbation theory. We show that it is unreliable to determine the \eta-\etap'mixinganglewithoutanyadditionalnormalizationconditionsotherthantheirdecaywidthestotwophotons.Thepossibleintrinsic mixing angle without any additional normalization conditions other than their decay widthes to two photons. The possible intrinsic c\bar{c}componentintheflavorsingletisinvestigated.Theheavyquarkpairhasdistinctpropertiesfromthelightonesinelectromagnetictransitionprocessesofpseudoscalarmesons.Itispossibletoexplorethesizeof component in the flavor singlet is investigated. The heavy quark pair has distinct properties from the light ones in electromagnetic transition processes of pseudoscalar mesons. It is possible to explore the size of c\bar{c}componentandournumericalresultsdisfavoralargeportionof component and our numerical results disfavor a large portion of c\bar{c}$ component.Comment: 13 pages, RevTeX, 4 ps figures, to appear in Phys. Rev.

    Gamma-ray observations of Tycho's SNR with VERITAS and Fermi

    Full text link
    High-energy gamma-ray emission from supernova remnants (SNRs) has provided a unique perspective for studies of Galactic cosmic-ray acceleration. Tycho's SNR is a particularly good target because it is a young, type Ia SNR that is well-studied over a wide range of energies and located in a relatively clean environment. Since the detection of gamma-ray emission from Tycho's SNR by VERITAS and Fermi-LAT, there have been several theoretical models proposed to explain its broadband emission and high-energy morphology. We report on an update to the gamma-ray measurements of Tycho's SNR with 147 hours of VERITAS and 84 months of Fermi-LAT observations, which represents about a factor of two increase in exposure over previously published data. About half of the VERITAS data benefited from a camera upgrade, which has made it possible to extend the TeV measurements toward lower energies. The TeV spectral index measured by VERITAS is consistent with previous results, but the expanded energy range softens a straight power-law fit. At energies higher than 400 GeV, the power-law index is 2.92±0.42stat±0.20sys2.92 \pm 0.42_{\mathrm{stat}} \pm 0.20_{\mathrm{sys}}. It is also softer than the spectral index in the GeV energy range, 2.14±0.09stat±0.02sys2.14 \pm 0.09_{\mathrm{stat}} \pm 0.02_{\mathrm{sys}}, measured by this study using Fermi--LAT data. The centroid position of the gamma-ray emission is coincident with the center of the remnant, as well as with the centroid measurement of Fermi--LAT above 1 GeV. The results are consistent with an SNR shell origin of the emission, as many models assume. The updated spectrum points to a lower maximum particle energy than has been suggested previously.Comment: Accepted for publication in The Astrophysical Journa
    corecore