4,964 research outputs found

    Quantum corrections to the stress-energy tensor in thermodynamic equilibrium with acceleration

    Full text link
    We show that the stress-energy tensor has additional terms with respect to the ideal form in states of global thermodynamic equilibrium in flat spacetime with non-vanishing acceleration and vorticity. These corrections are of quantum origin and their leading terms are second order in the gradients of the thermodynamic fields. Their relevant coefficients can be expressed in terms of correlators of the stress-energy tensor operator and the generators of the Lorentz group. With respect to previous assessments, we find that there are more second order coefficients and that all thermodynamic functions including energy density receive acceleration and vorticity dependent corrections. Notably, also the relation between \rho and p, that is the equation of state, is affected by acceleration and vorticity. We have calculated the corrections for a free real scalar field -- both massive and massless -- and we have found that they increase, particularly for a massive field, at very high acceleration and vorticity and very low temperature. Finally, these non-ideal terms depend on the explicit form of the stress-energy operator, implying that different stress-energy tensor of the scalar field -- canonical or improved -- are thermodynamically inequivalent.Comment: 18 pages, 1 figure. Minor changes, to appear in PR

    Satellite To Satellite Doppler Tracking (SSDT) for mapping of the Earth's gravity field

    Get PDF
    Two SSDT schemes were evaluated: a standard, low-low, SSDT configuration, which both satellites are in basically the same low altitude nearly circular orbit and the pair is characterized by small angular separation; and a more general configuration in which the two satellites are in arbitrary orbits, so that different configurations can be comparatively analyed. The standard low-low SSDT configuration is capable of recovering 1 deg X 1 deg surface anomalies with a strength as low as 1 milligal, located on the projected satellite path, when observing from a height as large as 300 km. The Colombo scheme provides an important complement of SSDT observations, inasmuch as it is sensitive to radial velocity components, while keeping at the same performance level both measuring sensitivity and measurement resolution

    System engineering study of electrodynamic tether as a spaceborne generator and radiator of electromagnetic waves in the ULF/ELF frequency band

    Get PDF
    The transmission and generation by orbiting tethered satellite systems of information carrying electromagnetic waves in the ULF/ELF frequency band to the Earth at suitably high signal intensities was examined and the system maintaining these intensities in their orbits for long periods of time without excessive onboard power requirements was investigated. The injection quantity power into electromagnetic waves as a function of system parameters such as tether length and orbital height was estimated. The basic equations needed to evaluate alternataing current tethered systems for external energy requirements are presented. The energy equations to tethered systems with various lengths, tether resistances, and radiation resistances, operating at different current values are applied. Radiation resistance as a function of tether length and orbital height is discussed. It is found that ULF/ELF continuously radiating systems could be maintained in orbit with moderate power requirements. The effect of tether length on the power going into electromagnetic waves and whether a single or dual tether system is preferable for the self-driven mode is discussed. It is concluded that the single tether system is preferable over the dual system

    Stellar structures in the outer regions of M33

    Full text link
    We present Subaru/Suprime-Cam deep V and I imaging of seven fields in the outer regions of M33. Our aim is to search for stellar structures corresponding to extended HI clouds found in a recent 21-cm survey of the galaxy. Three fields probe a large HI complex to the southeastern (SE) side of the galaxy. An additional three fields cover the northwestern (NW) side of the galaxy along the HI warp. A final target field was chosen further north, at a projected distance of approximately 25 kpc, to study part of the large stellar plume recently discovered around M33. We analyse the stellar population at R > 10 kpc by means of V, I colour magnitude diagrams reaching the red clump. Evolved stellar populations are found in all fields out to 120' (~ 30 kpc), while a diffuse population of young stars (~ 200 Myr) is detected out to a galactocentric radius of 15 kpc. The mean metallicity in the southern fields remains approximately constant at [M/H] = -0.7 beyond the edge of the optical disc, from 40' out to 80'. Along the northern fields probing the outer \hi disc, we also find a metallicity of [M/H] = -0.7 between 35' and 70' from the centre, which decreases to [M/H] = -1.0 at larger angular radii out to 120'. In the northernmost field, outside the disc extent, the stellar population of the large stellar feature possibly related to a M33-M31 interaction is on average more metal-poor ([M/H] = -1.3) and older (> 6 Gyr). An exponential disc with a large scale-length (~ 7 kpc) fits well the average distribution of stars detected in both the SE and NW regions from a galactocentric distance of 11 kpc out to 30 kpc. The stellar distribution at large radii is disturbed and, although there is no clear correlation between the stellar substructures and the location of the HI clouds, this gives evidence for tidal interaction or accretion events.Comment: 13 pages, 13 figures. Accepted for publications in Astronomy and Astrophysics; minor revisions of the tex

    A calcareous nannofossil and organic geochemical study of marine palaeoenvironmental changes across the Sinemurian/Pliensbachian (early Jurassic, ~191Ma) in Portugal

    Get PDF
    The Sinemurian/Pliensbachian boundary (~ 191 Ma) is acknowledged as one of the most important steps in the radiation of planktonic organisms, especially primary producers such as dinoflagellates and coccolithophores. To date, there is no detailed study documenting changes in planktonic assemblages related to palaeoceanographic changes across this boundary. The aim of this study is to characterize the palaeoenvironmental changes occurring across the Sinemurian/Pliensbachian boundary at the São Pedro de Moel section (Lusitanian Basin, Portugal) using micropalaeontology and organic geochemistry approaches. Combined calcareous nannofossil assemblage and lipid biomarker data document for a decrease in primary productivity in relation to a major sea-level rise occurring above the boundary. The Lusitanian Basin was particularly restricted during the late Sinemurian with a relatively low sea level, a configuration that led to the recurrent development of black shales. After a sharp sea-level fall, the basin became progressively deeper and more open during the earliest Pliensbachian, subsequently to a major transgression. This sea-level increase seems to have been a global feature and could have been related to the opening of the Hispanic Corridor that connected the Tethys and palaeo-Pacific oceans. The palaeoceanographic and palaeoclimatic changes induced by this opening may have played a role in the diversification of coccolithophores with the first occurrence or colonization of Tethyan waters by placolith-type coccoliths

    A numerical study of the effects of primordial non-Gaussianities on weak lensing statistics

    Full text link
    While usually cosmological initial conditions are assumed to be Gaussian, inflationary theories can predict a certain amount of primordial non-Gaussianity which can have an impact on the statistical properties of the lensing observables. In order to evaluate this effect, we build a large set of realistic maps of different lensing quantities starting from light-cones extracted from large dark-matter only N-body simulations with initial conditions corresponding to different levels of primordial local non-Gaussianity strength fNLf_{\rm NL}. Considering various statistical quantities (PDF, power spectrum, shear in aperture, skewness and bispectrum) we find that the effect produced by the presence of primordial non-Gaussianity is relatively small, being of the order of few per cent for values of ∣fNL∣|f_{\rm NL}| compatible with the present CMB constraints and reaching at most 10-15 per cent for the most extreme cases with ∣fNL∣=1000|f_{\rm NL}|=1000. We also discuss the degeneracy of this effect with the uncertainties due to the power spectrum normalization σ8\sigma_8 and matter density parameter Ωm\Omega_{\rm m}, finding that an error in the determination of σ8\sigma_8 (Ωm\Omega_{\rm m}) of about 3 (10) per cent gives differences comparable with non-Gaussian models having fNL=±1000f_{\rm NL}=\pm 1000. These results suggest that the possible presence of an amount of primordial non-Gaussianity corresponding to ∣fNL∣=100|f_{\rm NL}|=100 is not hampering a robust determination of the main cosmological parameters in present and future weak lensing surveys, while a positive detection of deviations from the Gaussian hypothesis is possible only breaking the degeneracy with other cosmological parameters and using data from deep surveys covering a large fraction of the sky.Comment: accepted by MNRA
    • …
    corecore