47 research outputs found

    Immune monitoring and TCR sequencing of CD4 T cells in a long term responsive patient with metastasized pancreatic ductal carcinoma treated with individualized, neoepitope-derived multipeptide vaccines : a case report

    Get PDF
    Abstract Background Cancer vaccines can effectively establish clinically relevant tumor immunity. Novel sequencing approaches rapidly identify the mutational fingerprint of tumors, thus allowing to generate personalized tumor vaccines within a few weeks from diagnosis. Here, we report the case of a 62-year-old patient receiving a four-peptide-vaccine targeting the two sole mutations of his pancreatic tumor, identified via exome sequencing. Methods Vaccination started during chemotherapy in second complete remission and continued monthly thereafter. We tracked IFN-γ+ T cell responses against vaccine peptides in peripheral blood after 12, 17 and 34 vaccinations by analyzing T-cell receptor (TCR) repertoire diversity and epitope-binding regions of peptide-reactive T-cell lines and clones. By restricting analysis to sorted IFN-γ-producing T cells we could assure epitope-specificity, functionality, and TH1 polarization. Results A peptide-specific T-cell response against three of the four vaccine peptides could be detected sequentially. Molecular TCR analysis revealed a broad vaccine-reactive TCR repertoire with clones of discernible specificity. Four identical or convergent TCR sequences could be identified at more than one time-point, indicating timely persistence of vaccine-reactive T cells. One dominant TCR expressing a dual TCRVα chain could be found in three T-cell clones. The observed T-cell responses possibly contributed to clinical outcome: The patient is alive 6 years after initial diagnosis and in complete remission for 4 years now. Conclusions Therapeutic vaccination with a neoantigen-derived four-peptide vaccine resulted in a diverse and long-lasting immune response against these targets which was associated with prolonged clinical remission. These data warrant confirmation in a larger proof-of concept clinical trial

    Insights into the innate immunity of the Mediterranean mussel Mytilus galloprovincialis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sessile bivalves of the genus <it>Mytilus </it>are suspension feeders relatively tolerant to a wide range of environmental changes, used as sentinels in ecotoxicological investigations and marketed worldwide as seafood. Mortality events caused by infective agents and parasites apparently occur less in mussels than in other bivalves but the molecular basis of such evidence is unknown. The arrangement of Mytibase, interactive catalogue of 7,112 transcripts of <it>M. galloprovincialis</it>, offered us the opportunity to look for gene sequences relevant to the host defences, in particular the innate immunity related genes.</p> <p>Results</p> <p>We have explored and described the Mytibase sequence clusters and singletons having a putative role in recognition, intracellular signalling, and neutralization of potential pathogens in <it>M. galloprovincialis</it>. Automatically assisted searches of protein signatures and manually cured sequence analysis confirmed the molecular diversity of recognition/effector molecules such as the antimicrobial peptides and many carbohydrate binding proteins. Molecular motifs identifying complement C1q, C-type lectins and fibrinogen-like transcripts emerged as the most abundant in the Mytibase collection whereas, conversely, sequence motifs denoting the regulatory cytokine MIF and cytokine-related transcripts represent singular and unexpected findings. Using a cross-search strategy, 1,820 putatively immune-related sequences were selected to design oligonucleotide probes and define a species-specific Immunochip (DNA microarray). The Immunochip performance was tested with hemolymph RNAs from mussels injected with <it>Vibrio splendidus </it>at 3 and 48 hours post-treatment. A total of 143 and 262 differentially expressed genes exemplify the early and late hemocyte response of the <it>Vibrio</it>-challenged mussels, respectively, with AMP trends confirmed by qPCR and clear modulation of interrelated signalling pathways.</p> <p>Conclusions</p> <p>The Mytibase collection is rich in gene transcripts modulated in response to antigenic stimuli and represents an interesting window for looking at the mussel immunome (transcriptomes mediating the mussel response to non-self or abnormal antigens). On this basis, we have defined a new microarray platform, a mussel Immunochip, as a flexible tool for the experimental validation of immune-candidate sequences, and tested its performance on <it>Vibrio</it>-activated mussel hemocytes. The microarray platform and related expression data can be regarded as a step forward in the study of the adaptive response of the <it>Mytilus </it>species to an evolving microbial world.</p

    BMJ Open

    Get PDF
    PURPOSE: The currently ongoing Epidemiological Strategy and Medical Economics (ESME) research programme aims at centralising real-life data on oncology care for epidemiological research purposes. We draw on results from the metastatic breast cancer (MBC) cohort to illustrate the methodology used for data collection in the ESME research programme. PARTICIPANTS: All consecutive >/=18 years patients with MBC treatment initiated between 2008 and 2014 in one of the 18 French Comprehensive Cancer Centres were selected. Diagnostic, therapeutic and follow-up data (demographics, primary tumour, metastatic disease, treatment patterns and vital status) were collected through the course of the disease. Data collection is updated annually. FINDING TO DATE: With a recruitment target of 30 000 patients with MBC by 2019, we currently screened a total of 45 329 patients, and >16 700 patients with a metastatic disease treatment initiated after 2008 have been selected. 20.7% of patients had an hormone receptor (HR)-negative MBC, 73.7% had a HER2-negative MBC and 13.9% were classified as triple-negative BC (ie, HER2 and HR status both negative). Median follow-up duration from MBC diagnosis was 48.55 months for the whole cohort. FUTURE PLANS: These real-world data will help standardise the management of MBC and improve patient care. A dozen of ancillary research projects have been conducted and some of them are already accepted for publication or ready to be issued. The ESME research programme is expanding to ovarian cancer and advanced/metastatic lung cancer. Our ultimate goal is to achieve a continuous link to the data of the cohort to the French national Health Data System for centralising data on healthcare reimbursement (drugs, medical procedures), inpatient/outpatient stays and visits in primary/secondary care settings. TRIAL REGISTRATION NUMBER: NCT03275311; Pre-results

    Acute thermal stress and various heavy metals induce tissue-specific pro- or anti-apoptotic events via the p38-MAPK signal transduction pathway in Mytilus galloprovincialis (Lam.)

    No full text
    We investigated the effects of various heavy metals such as copper, zinc and cadmium, as well as acute thermal stress, on the signalling mechanisms involved in the protection and/or apoptosis of Mytilus galloprovincialis mantle and gill tissues. The results of our studies revealed that mantle and gill tissues differentially respond to the stressful stimuli examined. In the mantle tissue, 1 μmol l-1 Cu2+ and 50 μmol l-1 Zn2+ induced a transient p38-MAPK activation, whereas 1 μmol l-1 Cd2+ induced a biphasic profile of the kinase phosphorylation with maximal values at 15 and 120 min of treatment, respectively. Furthermore, 1 μmol l-1 SB203580 abolished the Cu2+-induced kinase phosphorylation. In gills, both Cu2+ and Zn2+ induced a considerably higher p38-MAPK activation, which remained elevated for at least 60 min, whereas Cd2+ induced a maximal kinase activation within 60 min of treatment. Hypothermia (4°C) induced a moderate kinase phosphorylation (maximised at 30 min), whereas hyperthermia (30°C) induced a rapid (within 15 min) p38-MAPK phosphorylation that remained considerably above basal levels for at least 2 h. Our studies on the synergistic effect of hyperthermia and Cu2+ revealed that these two stressful stimuli are additive in the mantle tissue, inducing an almost double p38-MAPK activation. Further studies on the involvement of the p38-MAPK signalling pathway in tissue-specific pro- or anti-apoptotic events revealed that identical stressful stimuli possibly lead to apoptotic death via the caspase-3 activation in the mantle tissue and to anti-apoptotic events possibly via the induction of Hsp70 overexpression in the gill tissue
    corecore