958 research outputs found

    Understanding technology integration in secondary mathematics: Theorising the role of the teacher

    Get PDF
    Previous research on computers and graphics calculators in mathematics education has examined effects on curriculum content and students’ mathematical achievement and attitudes while less attention has been given to the relationship between technology use and issues of pedagogy, in particular the impact on teachers’ professional learning in specific classroom and school environments. This observation is critical in the current context of educational policy making, where it is assumed – often incorrectly – that supplying schools with hardware and software will increase teachers’ use of technology and encourage more innovative teaching approaches. This paper reports on a research program that aimed to develop better understanding of how and under what conditions Australian secondary school mathematics teachers learn to effectively integrate technology into their practice. The research adapted Valsiner’s concepts of the Zone of Proximal Development, Zone of Free Movement and Zone of Promoted Action to devise a theoretical framework for analysing relationships between factors influencing teachers’ use of technology in mathematics classrooms. This paper illustrates how the framework may be used by analysing case studies of a novice teacher and an experienced teacher in different school settings

    Grain boundary melting in ice

    Full text link
    We describe an optical scattering study of grain boundary premelting in water ice. Ubiquitous long ranged attractive polarization forces act to suppress grain boundary melting whereas repulsive forces originating in screened Coulomb interactions and classical colligative effects enhance it. The liquid enhancing effects can be manipulated by adding dopant ions to the system. For all measured grain boundaries this leads to increasing premelted film thickness with increasing electrolyte concentration. Although we understand that the interfacial surface charge densities qsq_s and solute concentrations can potentially dominate the film thickness, we can not directly measure them within a given grain boundary. Therefore, as a framework for interpreting the data we consider two appropriate qsq_s dependent limits; one is dominated by the colligative effect and one is dominated by electrostatic interactions.Comment: 6 pages, 5 figure

    Phase behaviour of binary mixtures of diamagnetic colloidal platelets in an external magnetic field

    Full text link
    Using fundamental measure density functional theory we investigate paranematic-nematic and nematic-nematic phase coexistence in binary mixtures of circular platelets with vanishing thicknesses. An external magnetic field induces uniaxial alignment and acts on the platelets with a strength that is taken to scale with the platelet area. At particle diameter ratio lambda=1.5 the system displays paranematic-nematic coexistence. For lambda=2, demixing into two nematic states with different compositions also occurs, between an upper critical point and a paranematic-nematic-nematic triple point. Increasing the field strength leads to shrinking of the coexistence regions. At high enough field strength a closed loop of immiscibility is induced and phase coexistence vanishes at a double critical point above which the system is homogeneously nematic. For lambda=2.5, besides paranematic-nematic coexistence, there is nematic-nematic coexistence which persists and hence does not end in a critical point. The partial orientational order parameters along the binodals vary strongly with composition and connect smoothly for each species when closed loops of immiscibility are present in the corresponding phase diagram.Comment: 9 pages, to appear in J.Phys:Condensed Matte

    A sociocultural analysis of the development of pre-service and beginning teachers’ pedagogical identities as users of technology

    Get PDF
    This paper reports on a study that investigated the pedagogical practices and beliefs of pre-service and beginning teachers in integrating technology into the teaching of secondary school mathematics. A case study documents how one teachers modes of working with technology changed over time and across different school contexts, and identifies relationships between a range of personal and contextual factors that influenced the development of his identity as a teacher. This analysis views teachers learning as increasing participation in sociocultural practices, and uses Valsiners concepts of the Zone of Proximal Development, Zone of Free Movement, and Zone of Promoted Action to offer a dynamic way of theorising teacher learning as identity formation

    Do science students graduate knowing what they know and don’t know: The case of quantitative skills

    Get PDF
    In the sciences, the undergraduate curriculum has often come under scrutiny by scientists like Carl Wieman and Jo Handelsman for being content-focused with rote learning assessment that does not prepare graduates for the scientific workforce. There has been an international push to reform undergraduate science education to better align curricula with the capabilities required of modern scientists. In Australia, there has been a focus on degree program curriculum with the Science Threshold Learning Outcomes, which are intended to guide holistic curriculum development to enable students to graduate with the appropriate level of skills, knowledge and attributes needed of modern day scientists. Agreeing on science graduate outcomes was an essential first step for the Australian science higher education sector. As Beverly Oliver’s Assuring Graduate Outcomes Office for Learning and Teaching Guide indicates, the challenge now is to assess these outcomes. Assessing such outcomes is a challenge because graduate level learning outcomes are complex, inexplicably linked with disciplinary contexts and instruments do not exist for most outcomes. For students to be motivated, engaged and ready for the workforce, be it a science-related career or not, we need to start understanding what students can do and what they know they can do. In the context of a particular graduate learning outcome, we pose the question: do students actually know what they know? We initiated a pilot study with 211 final year biomedical science students to investigate students’ ability to self-assess effectively their acquisition of quantitative skills. The Quantitative Skills Assessment of Science Students was developed to gather this data, which comprised questions from existing performance assessment tasks developed as part of National Science Foundation funded projects (ARTIST, CAOS and Mathbench projects). In total, the instrument included 35 questions across mathematical (10 questions) and statistical (25 questions) topics. The questions were further organised into sub-topics that examined students’ understanding of typical quantitative skills in the biosciences (e.g. serial dilutions, probability, metric conversions, correlation and causation). Following completion of the questions for each sub-topic, students were asked to indicate their level of task-specific confidence using a four point, alpha Likert scale. Bandura’s task specific self-efficacy theory was adopted to measure students’ self-assessment via the confidence scale. We explored the alignment between students’ performance and confidence, drawing on Sadler’s notion of evaluative expertise to interpret the results. Performance scores and confidence indicators were categorised and students allocated to one of four categories: high performance-high confidence, high performance-low confidence, low performance-low confidence and low performance-high confidence. Overall results revealed that approximately half of the students fell into one of the two aligned categories, high performance-high confidence or low performance-low confidence, suggesting they were reasonable evaluator experts (effectively self-assessed). Analysis by sub-topics displayed wider ranges of distributions across categories. Findings will be presented along with broad implications for how the science higher education might begin to tackle the challenge of assessing outcomes and assuring our graduates are aware of the learning outcomes gained during their undergraduate degree programs

    Real-Gas Effects and Phase Separation in Underexpanded Jets at Engine-Relevant Conditions

    Full text link
    A numerical framework implemented in the open-source tool OpenFOAM is presented in this work combining a hybrid, pressure-based solver with a vapor-liquid equilibrium model based on the cubic equation of state. This framework is used in the present work to investigate underexpanded jets at engine-relevant conditions where real-gas effects and mixture induced phase separation are probable to occur. A thorough validation and discussion of the applied vapor-liquid equilibrium model is conducted by means of general thermodynamic relations and measurement data available in the literature. Engine-relevant simulation cases for two different fuels were defined. Analyses of the flow field show that the used fuel has a first order effect on the occurrence of phase separation. In the case of phase separation two different effects could be revealed causing the single-phase instability, namely the strong expansion and the mixing of the fuel with the chamber gas. A comparison of single-phase and two-phase jets disclosed that the phase separation leads to a completely different penetration depth in contrast to single-phase injection and therefore commonly used analytical approaches fail to predict the penetration depth.Comment: Preprint submitted to AIAA Scitech 2018, Kissimmee, Florid

    Fresnel filtering in lasing emission from scarred modes of wave-chaotic optical resonators

    Get PDF
    We study lasing emission from asymmetric resonant cavity (ARC) GaN micro-lasers. By comparing far-field intensity patterns with images of the micro-laser we find that the lasing modes are concentrated on three-bounce unstable periodic ray orbits, i.e. the modes are scarred. The high-intensity emission directions of these scarred modes are completely different from those predicted by applying Snell's law to the ray orbit. This effect is due to the process of ``Fresnel filtering'' which occurs when a beam of finite angular spread is incident at the critical angle for total internal reflection.Comment: 4 pages, 3 figures (eps), RevTeX 3.1, submitted to Phys. Rev. Lett; corrected a minor (transcription) erro

    Biaxial nematic phases in fluids of hard board-like particles

    Full text link
    We use density-functional theory, of the fundamental-measure type, to study the relative stability of the biaxial nematic phase, with respect to non-uniform phases such as smectic and columnar, in fluids made of hard board-like particles with sizes σ1>σ2>σ3\sigma_1>\sigma_2>\sigma_3. A restricted-orientation (Zwanzig) approximation is adopted. Varying the ratio κ1=σ1/σ2\kappa_1=\sigma_1/\sigma_2 while keeping κ2=σ2/σ3\kappa_2=\sigma_2/\sigma_3, we predict phase diagrams for various values of κ2\kappa_2 which include all the uniform phases: isotropic, uniaxial rod- and plate-like nematics, and biaxial nematic. In addition, spinodal instabilities of the uniform phases with respect to fluctuations of the smectic, columnar and plastic-solid type, are obtained. In agreement with recent experiments, we find that the biaxial nematic phase begins to be stable for κ2≃2.5\kappa_2\simeq 2.5. Also, as predicted by previous theories and simulations on biaxial hard particles, we obtain a region of biaxility centred on κ1≈κ2\kappa_1\approx\kappa_2 which widens as κ2\kappa_2 increases. For \kappa_2\agt 5 the region κ2≈κ1\kappa_2\approx\kappa_1 of the packing-fraction vs. κ1\kappa_1 phase diagrams exhibits interesting topologies which change qualitatively with κ2\kappa_2. We have found that an increasing biaxial shape anisotropy favours the formation of the biaxial nematic phase. Our study is the first to apply FMT theory to biaxial particles and, therefore, it goes beyond the second-order virial approximation. Our prediction that the phase diagram must be asymmetric is a genuine result of the present approach, which is not accounted for by previous studies based on second-order theories.Comment: Preprint format. 18 pages, 5 figure

    Gyrotropic impact upon negatively refracting surfaces

    Get PDF
    Surface wave propagation at the interface between different types of gyrotropic materials and an isotropic negatively refracting medium, in which the relative permittivity and relative permeability are, simultaneously, negative is investigated. A general approach is taken that embraces both gyroelectric and gyromagnetic materials, permitting the possibility of operating in either the low GHz, THz or the optical frequency regimes. The classical transverse Voigt configuration is adopted and a complete analysis of non-reciprocal surface wave dispersion is presented. The impact of the surface polariton modes upon the reflection of both plane waves and beams is discussed in terms of resonances and an example of the influence upon the Goos–Hänchen shift is given

    Local Anisotropy of Fluids using Minkowski Tensors

    Full text link
    Statistics of the free volume available to individual particles have previously been studied for simple and complex fluids, granular matter, amorphous solids, and structural glasses. Minkowski tensors provide a set of shape measures that are based on strong mathematical theorems and easily computed for polygonal and polyhedral bodies such as free volume cells (Voronoi cells). They characterize the local structure beyond the two-point correlation function and are suitable to define indices 0≤βνa,b≤10\leq \beta_\nu^{a,b}\leq 1 of local anisotropy. Here, we analyze the statistics of Minkowski tensors for configurations of simple liquid models, including the ideal gas (Poisson point process), the hard disks and hard spheres ensemble, and the Lennard-Jones fluid. We show that Minkowski tensors provide a robust characterization of local anisotropy, which ranges from βνa,b≈0.3\beta_\nu^{a,b}\approx 0.3 for vapor phases to βνa,b→1\beta_\nu^{a,b}\to 1 for ordered solids. We find that for fluids, local anisotropy decreases monotonously with increasing free volume and randomness of particle positions. Furthermore, the local anisotropy indices βνa,b\beta_\nu^{a,b} are sensitive to structural transitions in these simple fluids, as has been previously shown in granular systems for the transition from loose to jammed bead packs
    • …
    corecore