3,510 research outputs found
Numerical determination of short period Trojan orbits in the restricted three body problem
Short period orbit calculations around equilateral libration points in plane restricted three-body proble
The Melbourne Shuffle: Improving Oblivious Storage in the Cloud
We present a simple, efficient, and secure data-oblivious randomized shuffle
algorithm. This is the first secure data-oblivious shuffle that is not based on
sorting. Our method can be used to improve previous oblivious storage solutions
for network-based outsourcing of data
Exploratory Analysis of the Airspace Throughput and Sensitivities of an Urban Air Mobility System
The use of small, vertical-takeoff and landing aircraft to provide efficient, high-speed, ondemand passenger transportation within a metropolitan area (e.g. intra-city transportation) is a topic of increasing interest and investment within the aerospace and transportation communities. Preliminary, mostly vehicle-level analysis suggests that passenger-carrying Urban Air Mobility has the potential to provide meaningful door-to-door trip time savings compared to identical trips taken solely by automobile, even for relatively short trips of a few tens of miles. Subsequent analysis has shown that if such trips can be conducted at costs competitive with ground transportation, the demand for such flight operations, not surprisingly, becomes unprecedented by historical airspace operations counts, raising fundamental questions regarding feasibility, practicality, capacity and basic system attributes such as separation criteria. In this paper, we conduct a preliminary assessment of vertipad requirements and en route separation minima relative to the feasibility of large-scale urban aviation operations. This analysis is acknowledged as being far from comprehensive and is intended to help define the initial boundaries of an airspace system compatible with enabling high-volume operations
Recommended from our members
Radar Z-R relationship for summer monsoon storms in Arizona
Radar-based estimates of rainfall rates and accumulations are one of the principal tools used by the National Weather Service (NWS) to identify areas of extreme precipitation that could lead to flooding. Radar-based rainfall estimates have been compared to gauge observations for 13 convective storm events over a densely instrumented, experimental watershed to derive an accurate reflectivity-rainfall rate (i.e., Z-R) relationship for these events. The resultant Z-R relationship, which is much different than the NWS operational Z-R, has been examined for a separate, independent event that occurred over a different location. For all events studied, the NWS operational Z-R significantly overestimates rainfall compared to gauge measurements. The gauge data from the experimental network, the NWS operational rain estimates, and the improved estimates resulting from this study have been input into a hydrologic model to "predict" watershed runoff for an intense event. Rainfall data from the gauges and from the derived Z-R relation produce predictions in relatively good agreement with observed streamflows. The NWS Z-R estimates lead to predicted peak discharge rates that are more than twice as large as the observed discharges. These results were consistent over a relatively wide range of subwatershed areas (4-148 km2). The experimentally derived Z-R relationship may provide more accurate radar estimates for convective storms over the southwest United States than does the operational convective Z-R used by the NWS. These initial results suggest that the generic NWS Z-R relation, used nationally for convective storms, might be substantially improved for regional application. © 2005 American Meteorological Society
Recommended from our members
Spatial patterns in thunderstorm rainfall events and their coupling with watershed hydrological response
Weather radar systems provide detailed information on spatial rainfall patterns known to play a significant role in runoff generation processes. In the current study, we present an innovative approach to exploit spatial rainfall information of air mass thunderstorms and link it with a watershed hydrological model. Observed radar data are decomposed into sets of rain cells conceptualized as circular Gaussian elements and the associated rain cell parameters, namely, location, maximal intensity and decay factor, are input into a hydrological model. Rain cells were retrieved from radar data for several thunderstorms over southern Arizona. Spatial characteristics of the resulting rain fields were evaluated using data from a dense rain gauge network. For an extreme case study in a semi-arid watershed, rain cells were derived and fed as input into a hydrological model to compute runoff response. A major factor in this event was found to be a single intense rain cell (out of the five cells decomposed from the storm). The path of this cell near watershed tributaries and toward the outlet enhanced generation of high flow. Furthermore, sensitivity analysis to cell characteristics indicated that peak discharge could be a factor of two higher if the cell was initiated just a few kilometers aside. © 2005 Elsevier Ltd. All rights reserved
Ground clutter measurements using the NASA airborne doppler radar: Description of clutter at the Denver and Philadelphia airports
Detection of hazardous wind shears from an airborne platform, using commercial sized radar hardware, has been debated and researched for several years. The primary concern has been the requirement for 'look-down' capability in a Doppler radar during the approach and landing phases of flight. During 'look-down' operation, the received signal (weather signature) will be corrupted by ground clutter returns. Ground clutter at and around urban airports can have large values of Normalized Radar Cross Section (NRCS) producing clutter returns which could saturate the radar's receiver, thus disabling the radar entirely, or at least from its intended function. The purpose of this research was to investigate the NRCS levels in an airport environment (scene), and to characterize the NRCS distribution across a variety of radar parameters. These results are also compared to results of a similar study using Synthetic Aperture Radar (SAR) images of the same scenes. This was necessary in order to quantify and characterize the differences and similarities between results derived from the real-aperature system flown on the NASA 737 aircraft and parametric studies which have previously been performed using the NASA airborne radar simulation program
The complexity of the California recall election
The October 7, 2003 California Recall Election strained California’s direct democracy. In recent California politics there has not been a statewide election conducted on such short notice; county election officials were informed on July 24 that the election would be held on October 7. Nor has California recently seen a ballot with so many candidates running for a single statewide office (see Mueller 1970). Under easy ballot access requirements, Secretary of State Kevin Shelley certified 135 candidates for the official ballot on August 13^1.
In the recall, voters cast votes on (1) whether to recall Governor Davis from office, and (2) his possible successor. These two voting decisions were made independent by the federal district court’s decision on July 29. The court’s decision invalidated a state law requiring a vote on the recall question in order for a vote on the successor election to be counted (Partnoy et al. 2003).
The abbreviated election calendar also led to many improvisations, including a dramatically reduced number of precinct poll sites throughout the state and the unprecedented ability of military personnel,
their dependents, and civilians living overseas to return their absentee ballots by fax. These problems produced litigation and speculation that substantial problems would mar the election and throw the outcome of both the recall and a possible successor’s election into doubt. In the end, the litigation failed to stall the recall election, and the large final vote margins on both the recall question and the successor ballot seemingly overwhelmed Election Day problems.
In this paper, we concentrate on some of the problems produced by the complexity of the recall election, but we do not attempt an exhaustive presentation of these problems. We focus on polling place problems on election day, the problems associated with translating the complicated recall election ballot into six languages, how the long ballot influenced voter behavior, and voter difficulties with the ballot measured with survey data. We conclude with a short discussion of the possible impact of these problems on the recall election
Fermi Surface of CrV across the Quantum Critical Point
We have measured de Haas-van Alphen oscillations of CrV, , at high fields for samples on both sides of the quantum critical
point at . For all samples we observe only those oscillations
associated with a single small hole band with magnetic breakdown orbits of the
reconstructed Fermi surface evident for . The absence of oscillations
from Fermi surface sheets most responsible for the spin density wave (SDW) in
Cr for is further evidence for strong fluctuation scattering of these
charge carriers well into the paramagnetic regime. We find no significant mass
enhancement of the carriers in the single observed band at any . An
anomalous field dependence of the dHvA signal for our crystal at
particular orientations of the magnetic field is identified as due to magnetic
breakdown that we speculate results from a field induced SDW transition at high
fields.Comment: 8 pages with 7 figure
- …