424 research outputs found

    Empowering Cultural Heritage through Digitalization Strategies and Metaverse Implementation

    Get PDF
    The digitalization of cultural organizations and the adoption of metaverse tools represent a transformative leap towards safeguarding and promoting the nation's rich cultural heritage. By embracing digital technologies, these organizations can transcend physical boundaries and engage a global audience, preserving national art, history, and traditions for generations to come. The importance of digitalization lies in enhancing audience accessibility, enabling virtual experiences, and facilitating cross-cultural exchange. Metaverse implementation opens doors to immersive virtual exhibitions, interactive storytelling, and dynamic cultural spaces. Through strategic partnerships and innovative content creation, cultural organizations can unlock new avenues for education, research, and revenue generatio

    Quantum interference and sub-Poissonian statistics for time-modulated driven dissipative nonlinear oscillator

    Full text link
    We show that quantum-interference phenomena can be realized for the dissipative nonlinear systems exhibiting hysteresis-cycle behavior and quantum chaos. Such results are obtained for a driven dissipative nonlinear oscillator with time-dependent parameters and take place for the regimes of long time intervals exceeding dissipation time and for macroscopic levels of oscillatory excitation numbers. Two schemas of time modulation: (i) periodic variation of the strength of the {\chi}(3) nonlinearity; (ii) periodic modulation of the amplitude of the driving force, are considered. These effects are obtained within the framework of phase-space quantum distributions. It is demonstrated that the Wigner functions of oscillatory mode in both bistable and chaotic regimes acquire negative values and interference patterns in parts of phase-space due to appropriately time-modulation of the oscillatory nonlinear dynamics. It is also shown that the time-modulation of the oscillatory parameters essentially improves the degree of sub-Poissonian statistics of excitation numbers

    Bipolar polaron pair recombination in P3HT/PCBM solar cells

    Get PDF
    The unique properties of organic semiconductors make them versatile base materials for many applications ranging from light emitting diodes to transistors. The low spin-orbit coupling typical for carbon-based materials and the resulting long spin lifetimes give rise to a large influence of the electron spin on charge transport which can be exploited in spintronic devices or to improve solar cell efficiencies. Magnetic resonance techniques are particularly helpful to elucidate the microscopic structure of paramagnetic states in semiconductors as well as the transport processes they are involved in. However, in organic devices the nature of the dominant spin-dependent processes is still subject to considerable debate. Using multi-frequency pulsed electrically detected magnetic resonance (pEDMR), we show that the spin-dependent response of P3HT/PCBM solar cells at low temperatures is governed by bipolar polaron pair recombination involving the positive and negative polarons in P3HT and PCBM, respectively, thus excluding a unipolar bipolaron formation as the main contribution to the spin-dependent charge transfer in this temperature regime. Moreover the polaron-polaron coupling strength and the recombination times of polaron pairs with parallel and antiparallel spins are determined. Our results demonstrate that the pEDMR pulse sequences recently developed for inorganic semiconductor devices can very successfully be transferred to the study of spin and charge transport in organic semiconductors, in particular when the different polarons can be distinguished spectrally
    • …
    corecore