428 research outputs found
Empowering Cultural Heritage through Digitalization Strategies and Metaverse Implementation
The digitalization of cultural organizations and the adoption of metaverse tools represent a transformative leap towards safeguarding and promoting the nation's rich cultural
heritage. By embracing digital technologies, these organizations
can transcend physical boundaries and engage a global audience,
preserving national art, history, and traditions for generations to
come. The importance of digitalization lies in enhancing
audience accessibility, enabling virtual experiences, and
facilitating cross-cultural exchange. Metaverse implementation
opens doors to immersive virtual exhibitions, interactive
storytelling, and dynamic cultural spaces. Through strategic
partnerships and innovative content creation, cultural
organizations can unlock new avenues for education, research,
and revenue generatio
Quantum interference and sub-Poissonian statistics for time-modulated driven dissipative nonlinear oscillator
We show that quantum-interference phenomena can be realized for the
dissipative nonlinear systems exhibiting hysteresis-cycle behavior and quantum
chaos. Such results are obtained for a driven dissipative nonlinear oscillator
with time-dependent parameters and take place for the regimes of long time
intervals exceeding dissipation time and for macroscopic levels of oscillatory
excitation numbers. Two schemas of time modulation: (i) periodic variation of
the strength of the {\chi}(3) nonlinearity; (ii) periodic modulation of the
amplitude of the driving force, are considered. These effects are obtained
within the framework of phase-space quantum distributions. It is demonstrated
that the Wigner functions of oscillatory mode in both bistable and chaotic
regimes acquire negative values and interference patterns in parts of
phase-space due to appropriately time-modulation of the oscillatory nonlinear
dynamics. It is also shown that the time-modulation of the oscillatory
parameters essentially improves the degree of sub-Poissonian statistics of
excitation numbers
Bipolar polaron pair recombination in P3HT/PCBM solar cells
The unique properties of organic semiconductors make them versatile base
materials for many applications ranging from light emitting diodes to
transistors. The low spin-orbit coupling typical for carbon-based materials and
the resulting long spin lifetimes give rise to a large influence of the
electron spin on charge transport which can be exploited in spintronic devices
or to improve solar cell efficiencies. Magnetic resonance techniques are
particularly helpful to elucidate the microscopic structure of paramagnetic
states in semiconductors as well as the transport processes they are involved
in. However, in organic devices the nature of the dominant spin-dependent
processes is still subject to considerable debate. Using multi-frequency pulsed
electrically detected magnetic resonance (pEDMR), we show that the
spin-dependent response of P3HT/PCBM solar cells at low temperatures is
governed by bipolar polaron pair recombination involving the positive and
negative polarons in P3HT and PCBM, respectively, thus excluding a unipolar
bipolaron formation as the main contribution to the spin-dependent charge
transfer in this temperature regime. Moreover the polaron-polaron coupling
strength and the recombination times of polaron pairs with parallel and
antiparallel spins are determined. Our results demonstrate that the pEDMR pulse
sequences recently developed for inorganic semiconductor devices can very
successfully be transferred to the study of spin and charge transport in
organic semiconductors, in particular when the different polarons can be
distinguished spectrally
- …