175 research outputs found

    Dynamical typicality of quantum expectation values

    Full text link
    We show that the vast majority of all pure states featuring a common expectation value of some generic observable at a given time will yield very similar expectation values of the same observable at any later time. This is meant to apply to Schroedinger type dynamics in high dimensional Hilbert spaces. As a consequence individual dynamics of expectation values are then typically well described by the ensemble average. Our approach is based on the Hilbert space average method. We support the analytical investigations with numerics obtained by exact diagonalization of the full time-dependent Schroedinger equation for some pertinent, abstract Hamiltonian model. Furthermore, we discuss the implications on the applicability of projection operator methods with respect to initial states, as well as on irreversibility in general.Comment: 4 pages, 1 figure, accepted for publication in Phys. Rev. Let

    Fourier's Law from Schroedinger Dynamics

    Full text link
    We consider a class of one-dimensional chains of weakly coupled many level systems. We present a theory which predicts energy diffusion within these chains for almost all initial states, if some concrete conditions on their Hamiltonians are met. By numerically solving the time dependent Schroedinger equation, we verify this prediction. Close to equilibrium we analyze this behavior in terms of heat conduction and compute the respective coefficient directly from the theory.Comment: 4 pages, 4 figures, accepted for publication in Phys. Rev. Let

    Thermodynamic processes generated by a class of completely positive quantum operations

    Full text link
    An attempt toward the operational formulation of quantum thermodynamics is made by employing the recently proposed operations forming positive operator-valued measures for generating thermodynamic processes. The quantity of heat as well as the von Neumann entropy monotonically increases under the operations. The fixed point analysis shows that repeated applications of these operations to a given system transform from its pure ground state at zero temperature to the completely random state in the high temperature limit with intermediate states being generically out of equilibrium. It is shown that the Clausius inequality can be violated along the processes, in general. A bipartite spin-1/2 system is analyzed as an explicit example.Comment: 22 pages and 1 figure. Modern Physics Letters B, in pres

    Transient fluctuation theorem in closed quantum systems

    Full text link
    Our point of departure are the unitary dynamics of closed quantum systems as generated from the Schr\"odinger equation. We focus on a class of quantum models that typically exhibit roughly exponential relaxation of some observable within this framework. Furthermore, we focus on pure state evolutions. An entropy in accord with Jaynes principle is defined on the basis of the quantum expectation value of the above observable. It is demonstrated that the resulting deterministic entropy dynamics are in a sense in accord with a transient fluctuation theorem. Moreover, we demonstrate that the dynamics of the expectation value are describable in terms of an Ornstein-Uhlenbeck process. These findings are demonstrated numerically and supported by analytical considerations based on quantum typicality.Comment: 5 pages, 6 figure

    Thermalization of quantum systems by finite baths

    Full text link
    We consider a discrete quantum system coupled to a finite bath, which may consist of only one particle, in contrast to the standard baths which usually consist of continua of oscillators, spins, etc. We find that such finite baths may nevertheless equilibrate the system though not necessarily in the way predicted by standard open system techniques. This behavior results regardless of the initial state being correlated or not.Comment: 7 pages, 6 figures, accepted for publication in Eur. Phys. Let

    Statistical description of small quantum systems beyond weak-coupling limit

    Full text link
    An explicit expression is derived for the statistical description of small quantum systems, which are relatively-weakly and directly coupled to only small parts of their environments. The derived expression has a canonical form, but is given by a renormalized self-Hamiltonian of the studied system, which appropriately takes into account the influence of the system-environment interaction. In the case that the system has a narrow spectrum and the environment is sufficiently large, the modification to the self-Hamiltonian usually has a mean-field feature, given by an environmental average of the interaction Hamiltonian. In other cases, the modification may be beyond the mean-field approximation.Comment: 9 pages, published versio

    Universal efficiency at optimal work with Bayesian statistics

    Full text link
    If the work per cycle of a quantum heat engine is averaged over an appropriate prior distribution for an external parameter aa, the work becomes optimal at Curzon-Ahlborn efficiency. More general priors of the form Π(a)1/aγ\Pi(a) \propto 1/a^{\gamma} yield optimal work at an efficiency which stays close to CA value, in particular near equilibrium the efficiency scales as one-half of the Carnot value. This feature is analogous to the one recently observed in literature for certain models of finite-time thermodynamics. Further, the use of Bayes' theorem implies that the work estimated with posterior probabilities also bears close analogy with the classical formula. These findings suggest that the notion of prior information can be used to reveal thermodynamic features in quantum systems, thus pointing to a new connection between thermodynamic behavior and the concept of information.Comment: revtex4, 5 pages, abstract changed and presentation improved; results unchanged. New result with Bayes Theorem adde

    Cavity-induced temperature control of a two-level system

    Full text link
    We consider a two-level atom interacting with a single mode of the electromagnetic field in a cavity within the Jaynes-Cummings model. Initially, the atom is thermal while the cavity is in a coherent state. The atom interacts with the cavity field for a fixed time. After removing the atom from the cavity and applying a laser pulse the atom will be in a thermal state again. Depending on the interaction time with the cavity field the final temperature can be varied over a large range. We discuss how this method can be used to cool the internal degrees of freedom of atoms and create heat baths suitable for studying thermodynamics at the nanoscale

    Transport in the 3-dimensional Anderson model: an analysis of the dynamics on scales below the localization length

    Full text link
    Single-particle transport in disordered potentials is investigated on scales below the localization length. The dynamics on those scales is concretely analyzed for the 3-dimensional Anderson model with Gaussian on-site disorder. This analysis particularly includes the dependence of characteristic transport quantities on the amount of disorder and the energy interval, e.g., the mean free path which separates ballistic and diffusive transport regimes. For these regimes mean velocities, respectively diffusion constants are quantitatively given. By the use of the Boltzmann equation in the limit of weak disorder we reveal the known energy-dependencies of transport quantities. By an application of the time-convolutionless (TCL) projection operator technique in the limit of strong disorder we find evidence for much less pronounced energy dependencies. All our results are partially confirmed by the numerically exact solution of the time-dependent Schroedinger equation or by approximative numerical integrators. A comparison with other findings in the literature is additionally provided.Comment: 23 pages, 10 figure

    Decoherence and the Nature of System-Environment Correlations

    Full text link
    We investigate system-environment correlations based on the exact dynamics of a qubit and its environment in the framework of pure decoherence (phase damping). We focus on the relation of decoherence and the build-up of system-reservoir entanglement for an arbitrary (possibly mixed) initial qubit state. In the commonly employed regime where the qubit dynamics can be described by a Markov master equation of Lindblad type, we find that for almost all qubit initial states inside the Bloch sphere, decoherence is complete while the total state is still separable - no entanglement is involved. In general, both "separable" and "entangling" decoherence occurs, depending on temperature and initial qubit state. Moreover, we find situations where classical and quantum correlations periodically alternate as a function of time in the regime of low temperatures
    corecore