2 research outputs found

    Establishing a generalized polyepigenetic biomarker for tobacco smoking

    Get PDF
    Large-scale epigenome-wide association meta-analyses have identified multiple 'signatures'' of smoking. Drawing on these findings, we describe the construction of a polyepigenetic DNA methylation score that indexes smoking behavior and that can be utilized for multiple purposes in population health research. To validate the score, we use data from two birth cohort studies: The Dunedin Longitudinal Study, followed to age-38 years, and the Environmental Risk Study, followed to age-18 years. Longitudinal data show that changes in DNA methylation accumulate with increased exposure to tobacco smoking and attenuate with quitting. Data from twins discordant for smoking behavior show that smoking influences DNA methylation independently of genetic and environmental risk factors. Physiological data show that changes in DNA methylation track smoking-related changes in lung function and gum health over time. Moreover, DNA methylation changes predict corresponding changes in gene expression in pathways related to inflammation, immune response, and cellular trafficking. Finally, we present prospective data about the link between adverse childhood experiences (ACEs) and epigenetic modifications; these findings document the importance of controlling for smoking-related DNA methylation changes when studying biological embedding of stress in life-course research. We introduce the polyepigenetic DNA methylation score as a tool both for discovery and theory-guided research in epigenetic epidemiology.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.The Dunedin Longitudinal Study is funded by the New Zealand Health Research Council, the New Zealand Ministry of Business, Innovation, and Employment, the National Institute on Aging (AG032282), and the Medical Research Council (MR/P005918/1). The E-Risk Study is funded by the Medical Research Council (G1002190) and the National Institute of Child Health and Human Development (HD077482). Additional support was provided by a Distinguished Investigator Award from the American Asthma Foundation to Dr. Mill, and by the Jacobs Foundation and the Avielle Foundation. Dr. Arseneault is the Mental Health Leadership Fellow for the U.K. Economic and Social Research Council. Dr. Belsky is a Jacobs Foundation Fellow. This work used a high-performance computing facility partially supported by grant 2016-IDG-1013 (“HARDAC + : Reproducible HPC for Next-generation Genomics”) from the North Carolina Biotechnology Center. Illumina DNA methylation data are accessible from the Gene Expression Omnibus (accession code: GSE105018).pre-print, post-print, publisher's PD
    corecore