92 research outputs found
Proof of concept: could snake venoms be a potential source of bioactive compounds for control of mould growth and mycotoxin production
© 2020 The Authors. This is an open access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.The objective was to screen 10 snake venoms for their efficacy to control growth and mycotoxin production by important mycotoxigenic fungi including Aspergillus flavus, Aspergillus westerdijkiae, Penicillium verrucosum, Fusarium graminearum and F. langsethiae. The Bioscreen C rapid assay system was used. The venoms from the Viperidae snake family delayed growth of some of the test fungi, especially F. graminearum and F. langsethiae and sometimes A. flavus. Some were also able to reduce mycotoxin production. The two most potent crude snake venoms (Naja nigricollis and N. siamensis; 41 and 43 fractions, respectively) were further fractionated and 83/84 of these fractions were able to reduce mycotoxin production by >90% in two of the mycotoxigenic fungi examined. This study suggests that there may be significant potential for the identification of novel fungistatic/fungicidal bioactive compounds as preservatives of raw and processed food commodities post-harvest from such snake venoms.Peer reviewedFinal Published versio
Influence of storage environment on maize grain: CO2 production, dry matter losses and aflatoxins contamination
Poor storage of cereals, such as maize can lead to both nutritional losses and mycotoxin contamination. The aim of this study was to examine the respiration of maize either naturally contaminated or inoculated with Aspergillus flavus to examine whether this might be an early and sensitive indicator of aflatoxin (AF) contamination and relative storability risk. We thus examined the relationship between different interacting storage environmental conditions (0.80â0.99 water activity (aw) and 15â35°C) in naturally contaminated and irradiated maize grain + A. flavus on relative respiration rates (R), dry matter losses (DMLs) and aflatoxin B1 and B2 (AFB1-B2) contamination. Temporal respiration and total CO2 production were analysed by GC-TCD, and results used to calculate the DMLs due to colonisation. AFs contamination was quantified at the end of the storage period by HPLC MS/MS. The highest respiration rates occurred at 0.95 aw and 30â35°C representing between 0.5% and 18% DMLs. Optimum AFs contamination was at the same aw at 30°C. Highest AFs contamination occurred in maize colonised only by A. flavus. A significant positive correlation between % DMLs and AFB1 contamination was obtained (r = 0.866, p < 0.001) in the irradiated maize treatments inoculated with A. flavus. In naturally contaminated maize + A. flavus inoculum loss of only 0.56% DML resulted in AFB1 contamination levels exceeding the EU legislative limits for food. This suggests that there is a very low threshold tolerance during storage of maize to minimise AFB1 contamination. This data can be used to develop models that can be effectively used in enhancing management for storage of maize to minimise risks of mycotoxin contamination
Biological Control Products for Aflatoxin Prevention in Italy: Commercial Field Evaluation of Atoxigenic Aspergillus flavus active Ingredients.
Since 2003, non-compliant aflatoxin concentrations have been detected in maize produced in
Italy. The most successful worldwide experiments in aflatoxin prevention resulted from distribution
of atoxigenic strains of Aspergillus flavus to displace aflatoxin-producers during crop development.
The displacement results in lower aflatoxin concentrations in harvested grain. The current study
evaluated in field performances of two atoxigenic strains of A. flavus endemic to Italy in artificially
inoculated maize ears and in naturally contaminated maize. Co-inoculation of atoxigenic strains
with aflatoxin producers resulted in highly significant reductions in aflatoxin concentrations (>90%)
in both years only with atoxigenic strain A2085. The average percent reduction in aflatoxin B1
concentration in naturally contaminated maize fields was 92.3%, without significant differences in
fumonisins between treated and control maize. The vegetative compatibility group of A2085 was the
most frequently recovered A. flavus in both treated and control plots (average 61.9% and 53.5% of the
A. flavus, respectively). A2085 was therefore selected as an active ingredient for biocontrol products
and deposited under provisions of the Budapest Treaty in the Belgian Co-Ordinated Collections of
Micro-Organisms (BCCM/MUCL) collection (accession MUCL54911). Further work on development
of A2085 as a tool for preventing aflatoxin contamination in maize produced in Italy is ongoing with
the commercial product named AF-X1âą
Study of cosmogenic activation above ground for the DarkSide-20k experiment
The activation of materials due to exposure to cosmic rays may become an important background source for experiments investigating rare event phenomena. DarkSide-20k, currently under construction at the Laboratori Nazionali del Gran Sasso, is a direct detection experiment for galactic dark matter particles, using a two-phase liquid-argon Time Projection Chamber (TPC) filled with 49.7 tonnes (active mass) of Underground Argon (UAr) depleted in 39Ar. Despite the outstanding capability of discriminating
/
background in argon TPCs, this background must be considered because of induced dead time or accidental coincidences mimicking dark-matter signals and it is relevant for low-threshold electron-counting measurements. Here, the cosmogenic activity of relevant long-lived radioisotopes induced in the experiment has been estimated to set requirements and procedures during preparation of the experiment and to check that it is not dominant over primordial radioactivity; particular attention has been paid to the activation of the 120 t of UAr used in DarkSide-20k. Expected exposures above ground and production rates, either measured or calculated, have been considered in detail. From the simulated counting rates in the detector due to cosmogenic isotopes, it is concluded that activation in copper and stainless steel is not problematic. The activity of 39Ar induced during extraction, purification and transport on surface is evaluated to be 2.8% of the activity measured in UAr by DarkSide-50 experiment, which used the same underground source, and thus considered acceptable. Other isotopes in the UAr such as 37Ar and 3H are shown not to be relevant due to short half-life and assumed purification methods
Sensitivity projections for a dual-phase argon TPC optimized for light dark matter searches through the ionization channel
Dark matter lighter than 10ââGeV/c2 encompasses a promising range of candidates. A conceptual design for a new detector, DarkSide-LowMass, is presented, based on the DarkSide-50 detector and progress toward DarkSide-20k, optimized for a low-threshold electron-counting measurement. Sensitivity to light dark matter is explored for various potential energy thresholds and background rates. These studies show that DarkSide-LowMass can achieve sensitivity to light dark matter down to the solar neutrino fog for GeV-scale masses and significant sensitivity down to 10ââMeV/c2 considering the Migdal effect or interactions with electrons. Requirements for optimizing the detectorâs sensitivity are explored, as are potential sensitivity gains from modeling and mitigating spurious electron backgrounds that may dominate the signal at the lowest energies
Measurement of isotopic separation of argon with the prototype of the cryogenic distillation plant Aria for dark matter searches
The Aria cryogenic distillation plant, located in Sardinia, Italy, is a key component of the DarkSide-20k experimental program for WIMP dark matter searches at the INFN Laboratori Nazionali del Gran Sasso, Italy. Aria is designed to purify the argon, extracted from underground wells in Colorado, USA, and used as the DarkSide-20k target material, to detector-grade quality. In this paper, we report the first measurement of argon isotopic separation by distillation with the 26 m tall Aria prototype. We discuss the measurement of the operating parameters of the column and the observation of the simultaneous separation of the three stable argon isotopes: 36Ar , 38Ar , and 40Ar . We also provide a detailed comparison of the experimental results with commercial process simulation software. This measurement of isotopic separation of argon is a significant achievement for the project, building on the success of the initial demonstration of isotopic separation of nitrogen using the same equipment in 2019
Study on cosmogenic activation above ground for the DarkSide-20k project
The activation of materials due to the exposure to cosmic rays may become an
important background source for experiments investigating rare event phenomena.
DarkSide-20k is a direct detection experiment for galactic dark matter
particles, using a two-phase liquid argon time projection chamber filled with
49.7 tonnes (active mass) of Underground Argon (UAr) depleted in 39Ar. Here,
the cosmogenic activity of relevant long-lived radioisotopes induced in the
argon and other massive components of the set-up has been estimated; production
of 120 t of radiopure UAr is foreseen. The expected exposure above ground and
production rates, either measured or calculated, have been considered. From the
simulated counting rates in the detector due to cosmogenic isotopes, it is
concluded that activation in copper and stainless steel is not problematic.
Activation of titanium, considered in early designs but not used in the final
design, is discussed. The activity of 39Ar induced during extraction,
purification and transport on surface, in baseline conditions, is evaluated to
be 2.8% of the activity measured in UAr from the same source, and thus
considered acceptable. Other products in the UAr such as 37Ar and 3H are shown
to not be relevant due to short half-life and assumed purification methods
Directionality of nuclear recoils in a liquid argon time projection chamber
The direct search for dark matter in the form of weakly interacting massive
particles (WIMP) is performed by detecting nuclear recoils (NR) produced in a
target material from the WIMP elastic scattering. A promising experimental
strategy for direct dark matter search employs argon dual-phase time projection
chambers (TPC). One of the advantages of the TPC is the capability to detect
both the scintillation and charge signals produced by NRs. Furthermore, the
existence of a drift electric field in the TPC breaks the rotational symmetry:
the angle between the drift field and the momentum of the recoiling nucleus can
potentially affect the charge recombination probability in liquid argon and
then the relative balance between the two signal channels. This fact could make
the detector sensitive to the directionality of the WIMP-induced signal,
enabling unmistakable annual and daily modulation signatures for future
searches aiming for discovery. The Recoil Directionality (ReD) experiment was
designed to probe for such directional sensitivity. The TPC of ReD was
irradiated with neutrons at the INFN Laboratori Nazionali del Sud, and data
were taken with 72 keV NRs of known recoil directions. The direction-dependent
liquid argon charge recombination model by Cataudella et al. was adopted and a
likelihood statistical analysis was performed, which gave no indications of
significant dependence of the detector response to the recoil direction. The
aspect ratio R of the initial ionization cloud is estimated to be 1.037 +/-
0.027 and the upper limit is R < 1.072 with 90% confidence levelComment: 20 pages, 10 figures, submitted to Eur. Phys. J.
- âŠ