1,492 research outputs found
Investigating Causal Relations between Public Spending and Economic Growth in Europe
The link between economic growth and the size of the public sector has fuelled one of the most wide-ranging debates in economic literature and the empirical evidence is far from conclusive. With different techniques that encompass both country-to-country causality analysis with VAR models and standard and grouped panels, we study this relationship for a sample of 25 countries from the 1960s to the present. Our contribution is fundamentally methodological, overcoming several pitfalls of the previous literature, namely, endogeneity, dynamic effects and common patterns. The results do not support the fulfilment of the Wagner''s Law and a negative effect of public size on economic growth is highlighted.
La relación entre tamaño del sector público y crecimiento económico ha dado lugar a una ingente literatura, tanto teórica como empírica. Sin embargo, la evidencia está muy lejos de ser concluyente. Este trabajo tiene por objeto investigar dicha relación para una muestra de 25 países europeos desde la década de 1960 hasta la actualidad. A tal efecto, se aplican diversas técnicas que comprenden el análisis de causalidad individual con modelos VAR y modelos de datos de panel, tanto tradicionales como de efectos agrupados. Nuestra contribución es esencialmente metodológica, puesto que permite superar algunos de los principales escollos de la literatura anterior: la endogeneidad, los efectos dinámicos y la omisión de patrones comunes. Los resultados obtenidos no sustentan la ley de Wagner y destacan, para la muestra seleccionada, la existencia de un efecto negativo del tamaño del sector público sobre el crecimiento económico
Business cycle patterns in European regions
The aim of this paper is threefold. First, we analyze the comovements of business cycles in European regions. Second, we date these business cycles and identify clusters of regions with similar business cycle behavior, using Finite Mixture Markov models. Third, we develop a new index to measure within-country homogeneity. We find that comovement among regions is, on average, quite low, although it increased during the convergence process prior to the euro cash and after the onset of the Great Recession. We identify five different groups of European regions. We also find heterogeneity in the size of border effects
The canonical 8-form on manifolds with holonomy group Spin(9)
An explicit expression of the canonical 8-form on a Riemannian manifold with
a Spin(9)-structure, in terms of the nine local symmetric involutions involved,
is given. The list of explicit expressions of all the canonical forms related
to Berger's list of holonomy groups is thus completed. Moreover, some results
on Spin(9)-structures as G-structures defined by a tensor and on the curvature
tensor of the Cayley planes, are obtained
Fluorescence in quantum dynamics: accurate spectra require post-mean-field approaches
Real time modeling of fluorescence with vibronic resolution entails the representation of the light–matter interaction coupled to a quantum-mechanical description of the phonons and is therefore a challenging problem. In this work, taking advantage of the difference in timescales characterizing internal conversion and radiative relaxation—which allows us to decouple these two phenomena by sequentially modeling one after the other—we simulate the electron dynamics of fluorescence through a master equation derived from the Redfield formalism. Moreover, we explore the use of a recent semiclassical dissipative equation of motion [C. M. Bustamante et al., Phys. Rev. Lett. 126, 087401 (2021)], termed coherent electron electric-field dynamics (CEED), to describe the radiative stage. By comparing the results with those from the full quantum-electrodynamics treatment, we find that the semiclassical model does not reproduce the right amplitudes in the emission spectra when the radiative process involves the de-excitation to a manifold of closely lying states. We argue that this flaw is inherent to any mean-field approach and is the case with CEED. This effect is critical for the study of light–matter interaction, and this work is, to our knowledge, the first one to report this problem. We note that CEED reproduces the correct frequencies in agreement with quantum electrodynamics. This is a major asset of the semiclassical model, since the emission peak positions will be predicted correctly without any prior assumption about the nature of the molecular Hamiltonian. This is not so for the quantum electrodynamics approach, where access to the spectral information relies on knowledge of the Hamiltonian eigenvalues
Dissipative equation of motion for electromagnetic radiation in quantum dynamics
The dynamical description of the radiative decay of an electronically excited state in realistic many-particle systems is an unresolved challenge. In the present investigation electromagnetic radiation of the charge density is approximated as the power dissipated by a classical dipole, to cast the emission in closed form as a unitary single-electron theory. This results in a formalism of unprecedented efficiency, critical for ab initio modeling, which exhibits at the same time remarkable properties: it quantitatively predicts decay rates, natural broadening, and absorption intensities. Exquisitely accurate excitation lifetimes are obtained from time-dependent DFT simulations for C2+, B+, and Be, of 0.565, 0.831, and 1.97 ns, respectively, in accord with experimental values of 0.57±0.02, 0.86±0.07, and 1.77–2.5 ns. Hence, the present development expands the frontiers of quantum dynamics, bringing within reach first-principles simulations of a wealth of photophysical phenomena, from fluorescence to time-resolved spectroscopies
Performance of the Fully Digital FPGA-based Front-End Electronics for the GALILEO Array
In this work we present the architecture and results of a fully digital Front
End Electronics (FEE) read out system developed for the GALILEO array. The FEE
system, developed in collaboration with the Advanced Gamma Tracking Array
(AGATA) collaboration, is composed of three main blocks: preamplifiers,
digitizers and preprocessing electronics. The slow control system contains a
custom Linux driver, a dynamic library and a server implementing network
services. The digital processing of the data from the GALILEO germanium
detectors has demonstrated the capability to achieve an energy resolution of
1.53 per mil at an energy of 1.33 MeV.Comment: 5 pages, 6 figures, preprint version of IEEE Transactions on Nuclear
Science paper submitted for the 19th IEEE Real Time Conferenc
The population of deformed bands in Cr by emission of Be from the S + Mg reaction
Using particle- coincidences we have studied the population of final
states after the emission of 2 -particles and of Be in nuclei
formed in S+Mg reactions at an energy of . The data were obtained in a setup
consisting of the GASP -ray detection array and the multidetector array
ISIS. Particle identification is obtained from the E and E signals of
the ISIS silicon detector telescopes, the Be being identified by the
instantaneous pile up of the E and E pulses. -ray decays of the
Cr nucleus are identified with coincidences set on 2 -particles
and on Be. Some transitions of the side-band with show
stronger population for Be emission relative to that of 2
-particles (by a factor ). This observation is interpreted as
due to an enhanced emission of Be into a more deformed nucleus.
Calculations based on the extended Hauser-Feshbach compound decay formalism
confirm this observation quantitatively.Comment: 17 pages, 9 figures accepted for publication in J. Phys.
Lifetime measurements in Co and Co
Lifetimes of the and states in Co and the
state in Co were measured using the recoil distance Doppler
shift and the differential decay curve methods. The nuclei were populated by
multi-nucleon transfer reactions in inverse kinematics. Gamma rays were
measured with the EXOGAM Ge array and the recoiling fragments were fully
identified using the large-acceptance VAMOS spectrometer. The E2 transition
probabilities from the and states to the ground
state could be extracted in Co as well as an upper limit for the
(E2) value in Co. The experimental
results were compared to large-scale shell-model calculations in the and
model spaces, allowing to draw conclusions on the single-particle
or collective nature of the various states.Comment: 8 pages, 8 figures, 1 table, accepted for publication in Physical
Review
Exploring the performance of the spectrometer prisma in heavy zirconium and xenon mass regions
We present results from two recent runs which illustrate the performance of the PRISMA spectrometer in the proximity of the upper limit of its operational interval, namely 96Zr + 124Sn at Elab = 500 MeV and 136Xe + 208Pb at Elab = 930 MeV. In the latter run, the γ array CLARA also allowed us to identify previously unknown γ transitions in the nuclides 136Cs and 134I
- …