81 research outputs found

    Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphigidae) and its natural host Nicotiana attenuata. VIII. An unbiased GCxGC-ToFMS analysis of the plantÂŽs elicited volatile emissions

    Get PDF
    Treating wounds in Nicotiana attenuata leaves with Manduca sexta oral secretions (W+OS) mimics most changes elicited by M. sexta herbivory, but an unbiased analysis of the effect of the different OS constituents on volatile emissions is lacking. We used two-dimensional gas chromatography/time-of-flight (GCxGC-ToF) mass spectrometry combined with multivariate statistics to parse volatiles into regulatory patterns. Volatiles released by wounding alone and by the alkalinity of OS were assessed by applying a buffer known to mimic the pH-mediated changes of OS elicitation (pectin methyl esterase activation and methanol release). The activities of fatty acid amino acid conjugates, well-known elicitors of antiherbivore defenses, and of 2-hydroxyoctadecatrienoic acid, a newly discovered signal in OS, were determined. Approximately 400 analytes were detected after deconvolution and alignment of GCxGC data; 35 volatiles were significantly regulated upon W+OS. Two-thirds of these were specifically regulated by OS, being either amplified (most terpenoids and certain hexenylesters) or strongly repressed (many short-chain alcohols and some aromatic and hexenylester derivatives). Fatty acid amino acid conjugates played a central role in this pattern of regulation, since they induced the emission of half of OS-elicited volatiles and inhibited the production of almost all OS-repressed volatiles; 2-hydroxyoctadecatrienoic acid influenced emission of trans-α-bergamotene, while other unknown OS constituents amplified hexenylester production. We conclude that the complex bouquet of herbivory-elicited volatiles results from the complex modulations of the wound response by diverse cues found in OS. This work also underscores the value of ultra-high-resolution GCxGC-ToF analysis combined with the nontargeted mining of the resulting data

    Ethylene is a local modulator of jasmonate-dependent phenolamide accumulation during Manduca sexta herbivory in Nicotiana attenuata

    Full text link
    International audienceRapid reconfigurations of interconnected phytohormone signalling networks allow plants to tune their physiology to constantly varying ecological conditions. During insect herbivory, most of the induced changes in defence-related leaf metabolites are controlled by jasmonate (JA) signalling, which, in the wild tobacco Nicotiana attenuata, recruits MYB8, a transcription factor controlling the accumulation of phenolic-polyamine conjugates (phenolamides). In this and other plant species, herbivory also locally triggers ethylene (ET) production but the outcome of the JA-E

    Information theory tests critical predictions of plant defense theory for specialized metabolism

    Full text link

    Silencing an N-Acyltransferase-Like Involved in Lignin Biosynthesis in Nicotiana attenuata Dramatically Alters Herbivory-Induced Phenolamide Metabolism

    Get PDF
    In a transcriptomic screen of Manduca sexta-induced N-acyltransferases in leaves of Nicotiana attenuata, we identified an N-acyltransferase gene sharing a high similarity with the tobacco lignin-biosynthetic hydroxycinnamoyl-CoA:shikimate/quinate hydroxycinnamoyl transferase (HCT) gene whose expression is controlled by MYB8, a transcription factor that regulates the production of phenylpropanoid polyamine conjugates (phenolamides, PAs). To evaluate the involvement of this HCT-like gene in lignin production as well as the resulting crosstalk with PA metabolism during insect herbivory, we transiently silenced (by VIGs) the expression of this gene and performed non-targeted (UHPLC-ESI/TOF-MS) metabolomics analyses. In agreement with a conserved function of N. attenuata HCT-like in lignin biogenesis, HCT-silenced plants developed weak, soft stems with greatly reduced lignin contents. Metabolic profiling demonstrated large shifts (up to 12% deregulation in total extracted ions in insect-attacked leaves) due to a large diversion of activated coumaric acid units into the production of developmentally and herbivory-induced coumaroyl-containing PAs (N',N''-dicoumaroylspermidine, N',N''-coumaroylputrescine, etc) and to minor increases in the most abundant free phenolics (chlorogenic and cryptochlorogenic acids), all without altering the production of well characterized herbivory-responsive caffeoyl- and feruloyl-based putrescine and spermidine PAs. These data are consistent with a strong metabolic tension, exacerbated during herbivory, over the allocation of coumaroyl-CoA units among lignin and unusual coumaroyl-containing PAs, and rule out a role for HCT-LIKE in tuning the herbivory-induced accumulation of other PAs. Additionally, these results are consistent with a role for lignification as an induced anti-herbivore defense

    Eavesdropping on Plant Volatiles by a Specialist Moth: Significance of Ratio and Concentration

    Get PDF
    We investigated the role that the ratio and concentration of ubiquitous plant volatiles play in providing host specificity for the diet specialist grape berry moth Paralobesia viteana (Clemens) in the process of locating its primary host plant Vitis sp. In the first flight tunnel experiment, using a previously identified attractive blend with seven common but essential components (“optimized blend”), we found that doubling the amount of six compounds singly [(E)- & (Z)-linalool oxides, nonanal, decanal, ÎČ-caryophyllene, or germacrene-D], while keeping the concentration of other compounds constant, significantly reduced female attraction (average 76% full and 59% partial upwind flight reduction) to the synthetic blends. However, doubling (E)-4,8-dimethyl 1,3,7-nonatriene had no effect on female response. In the second experiment, we manipulated the volatile profile more naturally by exposing clonal grapevines to Japanese beetle feeding. In the flight tunnel, foliar damage significantly reduced female landing on grape shoots by 72% and full upwind flight by 24%. The reduction was associated with two changes: (1) more than a two-fold increase in total amount of the seven essential volatile compounds, and (2) changes in their relative ratios. Compared to the optimized blend, synthetic blends mimicking the volatile ratio emitted by damaged grapevines resulted in an average of 87% and 32% reduction in full and partial upwind orientation, respectively, and the level of reduction was similar at both high and low doses. Taken together, these results demonstrate that the specificity of a ubiquitous volatile blend is determined, in part, by the ratio of key volatile compounds for this diet specialist. However, P. viteana was also able to accommodate significant variation in the ratio of some compounds as well as the concentration of the overall mixture. Such plasticity may be critical for phytophagous insects to successfully eavesdrop on variable host plant volatile signals

    Identification of Biologically Relevant Compounds in Aboveground and Belowground Induced Volatile Blends

    Get PDF
    Plants under attack by aboveground herbivores emit complex blends of volatile organic compounds (VOCs). Specific compounds in these blends are used by parasitic wasps to find their hosts. Belowground induction causes shifts in the composition of aboveground induced VOC blends, which affect the preference of parasitic wasps. To identify which of the many volatiles in the complex VOC blends may explain parasitoid preference poses a challenge to ecologists. Here, we present a case study in which we use a novel bioinformatics approach to identify biologically relevant differences between VOC blends of feral cabbage (Brassica oleracea L.). The plants were induced aboveground or belowground with jasmonic acid (JA) and shoot feeding caterpillars (Pieris brassicae or P. rapae). We used Partial Least Squares—Discriminant Analysis (PLSDA) to integrate and visualize the relation between plant-emitted VOCs and the preference of female Cotesia glomerata. Overall, female wasps preferred JA-induced plants over controls, but they strongly preferred aboveground JA-induced plants over belowground JA-induced plants. PLSDA revealed that the emission of several monoterpenes was enhanced similarly in all JA-treated plants, whereas homoterpenes and sesquiterpenes increased exclusively in aboveground JA-induced plants. Wasps may use the ratio between these two classes of terpenes to discriminate between aboveground and belowground induced plants. Additionally, it shows that aboveground applied JA induces different VOC biosynthetic pathways than JA applied to the root. Our bioinformatic approach, thus, successfully identified which VOCs matched the preferences of the wasps in the various choice tests. Additionally, the analysis generated novel hypotheses about the role of JA as a signaling compound in aboveground and belowground induced responses in plants

    Differences in Volatile Profiles of Turnip Plants Subjected to Single and Dual Herbivory Above- and Belowground

    Get PDF
    Plants attacked by herbivorous insects emit volatile organic compounds that are used by natural enemies to locate their host or prey. The composition of the blend is often complex and specific. It may vary qualitatively and quantitatively according to plant and herbivore species, thus providing specific information for carnivorous arthropods. Most studies have focused on simple interactions that involve one species per trophic level, and typically have investigated the aboveground parts of plants. These investigations need to be extended to more complex networks that involve multiple herbivory above- and belowground. A previous study examined whether the presence of the leaf herbivore Pieris brassicae on turnip plants (Brassica rapa subsp. rapa) influences the response of Trybliographa rapae, a specialist parasitoid of the root feeder Delia radicum. It showed that the parasitoid was not attracted by volatiles emitted by plants under simultaneous attack. Here, we analyzed differences in the herbivore induced plant volatile (HIPV) mixtures that emanate from such infested plants by using Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA). This multivariate model focuses on the differences between odor blends, and highlights the relative importance of each compound in an HIPV blend. Dual infestation resulted in several HIPVs that were present in both isolated infestation types. However, HIPVs collected from simultaneously infested plants were not the simple combination of volatiles from isolated forms of above- and belowground herbivory. Only a few specific compounds characterized the odor blend of each type of damaged plant. Indeed, some compounds were specifically induced by root herbivory (4-methyltridecane and salicylaldehyde) or shoot herbivory (methylsalicylate), whereas hexylacetate, a green leaf volatile, was specifically induced after dual herbivory. It remains to be determined whether or not these minor quantitative variations, within the background of more commonly induced odors, are involved in the reduced attraction of the root feeder’s parasitoid. The mechanisms involved in the specific modification of the odor blends emitted by dual infested turnip plants are discussed in the light of interferences between biosynthetic pathways linked to plant responses to shoot or root herbivory
    • 

    corecore