1,639 research outputs found

    Oscillatory Energy Exchange Between Waves Coupled by a Dynamic Artificial Crystal

    Full text link
    We describe a general mechanism of controllable energy exchange between waves propagating in a dynamic artificial crystal. We show that if a spatial periodicity is temporarily imposed on the transmission properties of a wave-carrying medium whilst a wave is inside, this wave is coupled to a secondary counter-propagating wave and energy oscillates between the two. The oscillation frequency is determined by the width of the spectral band gap created by the periodicity and the frequency difference between the coupled waves. The effect is demonstrated with spin waves in a dynamic magnonic crystal.Comment: 5 pages, 4 figure

    Closing the Nuclear Fuel Cycle with a Simplified Minor Actinide Lanthanide Separation Process (ALSEP) and Additive Manufacturing

    Get PDF
    Expanded low-carbon baseload power production through the use of nuclear fission can be enabled by recycling long-lived actinide isotopes within the nuclear fuel cycle. This approach provides the benefits of (a) more completely utilizing the energy potential of mined uranium, (b) reducing the footprint of nuclear geological repositories, and (c) reducing the time required for the radiotoxicity of the disposed waste to decrease to the level of uranium ore from one hundred thousand years to a few hundred years. A key step in achieving this goal is the separation of long-lived isotopes of americium (Am) and curium (Cm) for recycle into fast reactors. To achieve this goal, a novel process was successfully demonstrated on a laboratory scale using a bank of 1.25-cm centrifugal contactors, fabricated by additive manufacturing, and a simulant containing the major fission product elements. Americium and Cm were separated from the lanthanides with over 99.9% completion. The sum of the impurities of the Am/Cm product stream using the simulated raffinate was found to be 3.2 × 10−3 g/L. The process performance was validated using a genuine high burnup used nuclear fuel raffinate in a batch regime. Separation factors of nearly 100 for 154Eu over 241Am were achieved. All these results indicate the process scalability to an engineering scale

    Restrictions on modeling spin injection by resistor networks

    Full text link
    Because of the technical difficulties of solving spin transport equations in inhomogeneous systems, different resistor networks are widely applied for modeling spin transport. By comparing an analytical solution for spin injection across a ferromagnet - paramagnet junction with a resistor model approach, its essential limitations stemming from inhomogeneous spin populations are clarified.Comment: To be published in a special issue of Semicond. Sci. Technol., Guest editor Prof. G. Landweh

    Electrons in a ferromagnetic metal with a domain wall

    Full text link
    We present theoretical description of conduction electrons interacting with a domain wall in ferromagnetic metals. The description takes into account interaction between electrons. Within the semiclassical approximation we calculate the spin and charge distributions, particularly their modification by the domain wall. In the same approximation we calculate local transport characteristics, including relaxation times and charge and spin conductivities. It is shown that these parameters are significantly modified near the wall and this modification depends on electron-electron interaction.Comment: 10 pages with 4 figure

    Capillary condensation in disordered porous materials: hysteresis versus equilibrium behavior

    Full text link
    We study the interplay between hysteresis and equilibrium behavior in capillary condensation of fluids in mesoporous disordered materials via a mean-field density functional theory of a disordered lattice-gas model. The approach reproduces all major features observed experimentally. We show that the simple van der Waals picture of metastability fails due to the appearance of a complex free-energy landscape with a large number of metastable states. In particular, hysteresis can occur both with and without an underlying equilibrium transition, thermodynamic consistency is not satisfied along the hysteresis loop, and out-of-equilibrium phase transitions are possible.Comment: 4 pages, 4 figure

    Negative Domain Wall Resistance in Ferromagnets

    Full text link
    The electrical resistance of a diffusive ferromagnet with magnetic domain walls is studied theoretically, taking into account the spatial dependence of the magnetization. The semiclassical domain wall resistance is found to be either negative or positive depending on the difference between the spin-dependent scattering life-times. The predictions can be tested experimentally by transport studies in doped ferromagnets.Comment: 4 pages, 2 figures, accepted Phys. Rev. Let

    Spin Dynamics and Spin Transport

    Full text link
    Spin-orbit (SO) interaction critically influences electron spin dynamics and spin transport in bulk semiconductors and semiconductor microstructures. This interaction couples electron spin to dc and ac electric fields. Spin coupling to ac electric fields allows efficient spin manipulating by the electric component of electromagnetic field through the electric dipole spin resonance (EDSR) mechanism. Usually, it is much more efficient than the magnetic manipulation due to a larger coupling constant and the easier access to spins at a nanometer scale. The dependence of the EDSR intensity on the magnetic field direction allows measuring the relative strengths of the competing SO coupling mechanisms in quantum wells. Spin coupling to an in-plane electric field is much stronger than to a perpendicular field. Because electron bands in microstructures are spin split by SO interaction, electron spin is not conserved and spin transport in them is controlled by a number of competing parameters, hence, it is rather nontrivial. The relation between spin transport, spin currents, and spin populations is critically discussed. Importance of transients and sharp gradients for generating spin magnetization by electric fields and for ballistic spin transport is clarified.Comment: Invited talk at the 3rd Intern. Conf. on Physics and Applications of Spin-Related Phenomena in Semiconductors, Santa Barbara (CA), July 21 - 23. To be published in the Journal of Superconductivity. 7 pages, 2 figure

    Adsorption hysteresis and capillary condensation in disordered porous solids: a density functional study

    Full text link
    We present a theoretical study of capillary condensation of fluids adsorbed in mesoporous disordered media. Combining mean-field density functional theory with a coarse-grained description in terms of a lattice-gas model allows us to investigate both the out-of-equilibrium (hysteresis) and the equilibrium behavior. We show that the main features of capillary condensation in disordered solids result from the appearance of a complex free-energy landscape with a large number of metastable states. We detail the numerical procedures for finding these states, and the presence or absence of transitions in the thermodynamic limit is determined by careful finite-size studies.Comment: 30 pages, 18 figures. To appear in J. Phys.: Condens. Matte

    Entanglement, Mixedness, and Spin-Flip Symmetry in Multiple-Qubit Systems

    Full text link
    A relationship between a recently introduced multipartite entanglement measure, state mixedness, and spin-flip symmetry is established for any finite number of qubits. It is also shown that, within those classes of states invariant under the spin-flip transformation, there is a complementarity relation between multipartite entanglement and mixedness. A number of example classes of multiple-qubit systems are studied in light of this relationship.Comment: To appear in Physical Review A; submitted 14 May 200

    Reflection of electrons from a domain wall in magnetic nanojunctions

    Full text link
    Electronic transport through thin and laterally constrained domain walls in ferromagnetic nanojunctions is analyzed theoretically. The description is formulated in the basis of scattering states. The resistance of the domain wall is calculated in the regime of strong electron reflection from the wall. It is shown that the corresponding magnetoresistance can be large, which is in a qualitative agreement with recent experimental observations. We also calculate the spin current flowing through the wall and the spin polarization of electron gas due to reflections from the domain wall.Comment: 7 pages, 4 figure
    corecore